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ABSTRACT

 This study focused on understanding how several data characteristics associated 

with the investigation of effect heterogeneity (i.e., mixing weights, predictor 

distributions, and the inclusion of covariates) affected enumeration and parameter 

recovery with regression mixture models. The inclusion of C on X paths, where the latent 

class, C, is regressed on the predictor, X, allows predictor means to vary across classes, at 

two points in the model building process—during and after enumeration—was of interest. 

This main aim was accomplished by comparing the correct enumeration rates and 

parameter coverage rates with and without freely estimated predictor means across 

classes for models with two classes, considerable separation between groups, and a total 

sample size of 500. Findings from this study, in accordance with previous work, indicated 

that C on X paths, should only be included after enumeration (e.g., Nylund-Gibson & 

Maysen, 2014). Inclusion of C on X paths functionally frees the estimation of associated 

predictor means across classes. If these paths are included in the enumeration phase, 

over-extraction is typical when predictor variance differences are present. Results from 

this study supported findings from previous research that demonstrated the necessity of 

including the C on X path when predictor means vary across classes (Lamont, Vermunt, 

& Van Horn, 2016). Therefore, once the number of classes has been determined, C on X 

paths should be included in models just as researchers would freely estimate residual 

variances across classes.   
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CHAPTER 1 

INTRODUCTION

Intervention and prevention programs are commonly applied across many areas of 

the behavioral and social sciences in order to help individuals improve on an outcome of 

interest (e.g., increase students’ academic achievement and social skills) or avoid some 

deleterious event (e.g., school dropout prevention). Social scientists have acknowledged 

that individuals have diverse experiences as members of different communities, schools, 

families, and peer groups (Bronfenbrenner, 2005; Elder, 1998; Patterson, DeBaryshe, & 

Ramsey, 1989; Sampson & Laub, 1993). Thus, in the context of the social sciences, an 

intervention or prevention program could have different effects for some respondents due 

to characteristics of a subgroup (e.g., gender, race, etc.) or some unobservable, previously 

unhypothesized dimension and not the (in)effectiveness of the treatment.  

As an explanation for differential results, many developmental theories suggest 

heterogeneity in the effects of predictors on outcomes (Bauer, 2011). For example, 

ecological systems theory (Bronfenbrenner, 1977, 1989) infers that environmental 

influences on individuals’ responses to an intervention give rise to differential effects, 

whereby individuals experience differences in the relationship between predictors and 

outcomes. The degree to which individuals respond positively or negatively to an 

intervention is influenced by their environmental responsivity; whereby, highly 

responsive individuals will benefit more from an intervention in the proper environment 

and diminished benefits in a less supportive environment compared to less responsive 
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individuals (Blair, 2002; Klein Velderman, Bakersman-Kranenburg, Juffer, & van 

IJzendoorn, 2006). The Head Start model, which is based on Bronfenbrenner’s ecological 

systems theory, is an early educational intervention system that highlights the 

multifaceted nature of child development (Bronfenbrenner & Morris, 1998). Head Start is 

designed with the intention of providing students from low-income families the necessary 

tools to enter school ready to learn. However, even though the treatment (i.e., Head Start) 

is uniformly applied to low-income children, not all children have the same home 

experiences regarding maternal support and environment. Thus, there is the potential for 

an interaction between a student’s environment and the effectiveness of the Head Start 

intervention, which may manifest in differences in the observed results.  

Recent research provides evidence for the existence of heterogeneity in outcomes 

specifically related to learning and development. Concerning children attending in Head 

Start, some children experienced long-term positive outcomes, while Head Start had little 

to no effect for other children (Cooper & Lanza, 2014). Results from Cooper and Lanza 

(2014) suggested that English language learner (ELL) children experienced an overall-

positive effect from Head Start. However, this group can be further divided into two 

subgroups. Most ELL students in both groups had immigrant mothers without high 

school diplomas. However, the subgroups, and consequently differences in the children’s 

academic development, were associated with the presence or lack thereof of the child’s 

biological father. ELL children with a present biological father experienced greater, 

positive response to Head Start in terms of their reading and math scores than their peers 

with absent biological fathers. These results are in-line with what many behavioral 

theories suggest— that is, environmental influences on individuals’ responses to an 
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intervention give rise to differential effects, whereby individuals experience differences 

in the relationship between predictors and outcomes (Van Horn et al., 2015).  

Traditionally, researchers have studied differential treatment effects with the 

inclusion of covariates (i.e., gender, race) as moderators in multiple regression models. 

This is commonly thought of as an interaction, where an individual’s response to an 

intervention is a product of the average response to the intervention and characteristics of 

the individual (Aiken & West, 1991). For instance, in a multiple regression model that 

includes a slope for the effect of an intervention and a slope for the effect of gender, 

where male equals one, an interaction effect would be the product of multiplying the 

individual’s values for the intervention exposure and gender by the value of slope 

coefficient for the interaction term.  

Furthermore, attention to the presence of differential effects allows researchers to 

adequately address complex research questions involving interactions between behavior 

and environmental or social influences. Considering the Head Start example, 

environmental or social influences that lead to differential treatment effects, may be 

thought of as risk factors (Coie et al., 1993; Kellam, Koretz, & Moscicki, 1999), 

suggesting an underlying heterogeneity within populations of interest. Thus, research 

methodologies that can capture this underlying heterogeneity of individuals’ experiences 

and account for its effect on the relationship between predictors and outcomes will lead to 

an increased ability to differentiate intervention efficacy. The ability to account for 

differential effects is imperative for accurately describing the generalizability of 

interventions, which requires researchers to disentangle the heterogeneous subgroups 

from seemingly homogeneous samples of intervention participants.   



www.manaraa.com

4 

Although researchers in many fields have recognized the differential effect of 

environment on individuals’ responses to interventions, most research designs do not 

explicitly include a mechanism for modeling population heterogeneity. In applied 

research, interaction terms within the generalized linear model (GLM) framework to 

examine group differences are most commonly employed (e.g., Analysis of Covariance, 

ANCOVA). For example, one might be interested in understanding how students’ social 

skills (i.e., Y) develop as a function of the parenting styles with which the students are 

raised (i.e., X) across genders (i.e., Z). In this scenario, the researcher would estimate a 

GLM with an x by z interaction term to predict y; where the researcher is interested in 

understanding how the effect of parenting style on social skills varies across boys and 

girls.  However, this approach does not distinguish between a model in which the effect 

of X on Y varies as a function of Z and a model in which the effect of Z on Y varies as a 

function of X (Kraemer, Kierman, Essex, & Kupfer, 2008). Furthermore, this approach is 

limited by the necessity of a priori identification of moderators and, in many situations, 

insufficient power to test multiple interaction terms (Boyce et al., 1998).  

One alternative to using a GLM with interaction terms is the regression mixture 

model (Desarbo, Jedidi, & Sinha, 2001; Van Horn et al., 2009; Wedel & Desarbo, 1994. 

This is a type of finite mixture model that uncovers latent groups (i.e., classes) with 

similar characteristics which may have similar responses to a treatment or outcome. In 

this way, the regression mixture model explicitly models heterogeneity (i.e., differential 

effects) by allowing model parameters [e.g. intercepts, variances, and the effects of 

predictors on outcomes (i.e., slopes)] to vary across latent classes. The ability to 

empirically uncover qualitatively different groups of individuals with similar patterns on 
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a set of response variables that differ between groups is an advantage not shared by 

regression interactions, as these models assume that the sample is drawn from a 

homogenous population with respect to the effects of the pre-specified predictors 

(including group memberships) on the dependent variables. Regression mixtures include 

a mechanism for uncovering and measuring subgroups of individuals that experience 

different responses to a particular intervention, whereby the association between a 

predictor (i.e., X variable) and an outcome (i.e., Y variable) differ across participants due 

to unobserved heterogeneity (i.e., presence of discrete subgroups).        

Regression Mixture Models (RMMs) are best applied within the context of a 

theory-driven inquiry where there are a limited number of classes of individuals sharing 

similar relationships between predictors and outcomes (Van Horn et al., 2015). In the 

regression mixture framework, model parameters, including intercepts, slopes, and 

random errors can vary across discrete subgroups, referred to as latent classes. Latent 

class (henceforth, referred to simply as class) separation is measured by mean differences 

(i.e., intercepts) between classes and the effects of the predictors (i.e., slopes). Although 

RMMs do not assume equal variances of parameters (e.g., intercepts and slopes) across 

classes, non-normally distributed errors may bias parameter estimates (Van Horn et al., 

2012).  

Although GLMs may lead to similar conclusions as regression mixtures under 

certain conditions (such as when the predictors of differential effects are observed 

covariates such as gender and race), regression interactions are ill-equipped to detect 

unhypothesized heterogeneity (Van Horn et al, 2015). However, regression mixtures, are 

useful for building theories involving effect heterogeneity that would otherwise not be 
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accounted for by observed variable interactions in the GLM framework. More 

“traditional” approaches to modeling heterogeneity are limited by the ability to include 

observed variables, whereas regression mixtures include latent classes that have the 

potential to identify differential effects beyond what can be attributed to observed 

variable interactions.  

Van Horn and colleagues (2015) emphasize that the first step in regression 

mixture modeling should be justifying the theoretical existence of differential effects. For 

example, classical developmental theories suggest that poor parenting behaviors are 

associated with poor social adjustment in children (Campbell, Shaw, & Gilliom, 2000; 

Chorpita & Barlow, 1998; Rubin, Burgess, Dwyer, & Hastings, 2003). Evidence suggests 

that this relationship varies not only between children, but it may also depend on 

contextual and individual characteristics in both parents and children (Belsky, 2005). 

Results from regression mixtures provided evidence for the existence of effect 

heterogeneity in the relationship between parenting style and social skills beyond gender 

and ethnicity (Van Horn et al., 2015). Findings from this study revealed a subset of 

children who had higher than average social skills, which had a weak association with 

parenting style and was only partially explained by ethnicity (Van Horn et al., 2015). In 

other words, this means that the regression mixture uncovered an unexplainable source of 

variance in the relationship between the predictor and outcome through the inclusion of 

latent classes. However, this leads to a not-so-simple reality—that group is a source of 

heterogeneity that is modeled but must still be explained.  

In many instances, social scientists unknowingly assume from the outset of a 

study that the effect of a predictor on an outcome is the same across a group of 
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individuals. These same researchers, if there is reason to suspect that another variable 

(i.e., covariate) might influence the relationship between a predictor and an outcome, will 

include an interaction between the predictor of interest and a covariate, whereby the 

effect of the predictor of interest varies identically for the entire sample of individuals. 

Rather, in accordance with recommendations from Van Horn and colleagues (2015), 

researchers should instead assume the possibility of effect heterogeneity that would allow 

the relationships between the predictors and the outcome to vary across individuals, using 

latent classes in the regression mixture framework. Through empirical testing, researchers 

can determine whether the most parsimonious model features homogenous or 

heterogeneous relationships between predictors and an outcome. It is imperative that 

researchers regard differential effects as a possibility in a study not only for 

understanding the differences in how individuals respond to an intervention, beyond 

observed, hypothesized variables, but also for study planning—most importantly the 

number of people needed (i.e., sample size).  

RMMs are an insightful tool for the applied researcher. When population 

heterogeneity is hypothesized, regression mixtures offer a succinct, powerful framework 

for testing nebulous relationships between predictors and outcomes that function 

differently for different individuals. However, the most important, yet unanswered 

question related to regression mixtures is the extent to which these models can retrieve 

population equations when the predictor distributions vary across classes and how this 

might be affected by differences in mixing weights (i.e., sample proportions) across 

classes. This is question is critical to applied researchers, because it often does not seem 

reasonable to assume from the outset of a study that individuals whose experiences are so 
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substantively different as to warrant investigation of effect heterogeneity will also 

experience an exposure to a predictor that can be described by the same exact 

distribution—as described by parametric form, mean, and variance.  

Previous studies have considered many basic parameterizations of regression 

mixture modeling, but more work is needed to understand the practicality of using these 

models in situations that resemble conditions found in applied studies. For example, 

researchers have investigated several total sample sizes for regression mixtures with two 

classes and two predictors in each class. However, existing literature has not addressed 

the ability of regression mixtures to retrieve population parameters when the class with 

the larger slopes have the smallest percentage of the overall sample. And although 

previous work has shown that researchers should pay attention to the possibility of 

different class predictor means, yet, no study has investigated the ability of regression 

mixtures to handle unequal predictor variances across classes. 

The purpose of this study is to support and add to the field’s understanding of 

how to conduct research that assumes the possibility of differential effects. By simulating 

different conditions and parameterizations of regression mixtures, which are a method 

explicitly used for detecting differential effects, this study will add to the line of research 

aimed at understanding the requirements of implementing RMMs. Furthermore, this 

study will contribute to the applied researcher’s understanding of the utility of RMMs 

that can be used to fine tune interventions and provide much needed targeted 

differentiation in education and related social services. Findings from this study can 

provide insight into the ability of mixture models to accurately detect subgroups and 

estimate differential effects among individuals when the following assumptions cannot be 
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made: (a) equal-sized subgroups, (b) the largest subgroup had the largest slope, (c) the 

predictor means are equal across classes, and (d) the predictor variances are equal across 

classes. 
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CHAPTER 2 

REVIEW OF LITERATURE 

In this chapter, the regression mixture modeling framework and parameters to be 

estimated are described. In addition, recent methodological work investigating regression 

mixtures is detailed to provide both an introduction to regression mixtures and a review 

of relevant literature in order to ground and substantiate the need for the simulation study 

proposed in Chapter 3.  

Mixture models are a flexible framework, with a seemingly endless amount of 

applications. The following chapters details work related to one specific type of mixture 

model—the univariate normal regression mixture with multiple continuous predictors. 

Although this investigation will not definitively dismiss situations in which the researcher 

after estimating several models finds that the predictor means and variances can be 

assumed equal, it is worth investigating whether regression mixtures can correctly 

enumerate and retrieve parameters when predictor distributions are indeed different as 

well as when mixing weights are equal and unequal. 

2.1 REGRESSION MIXTURE FRAMEWORK 

RMMs (Quandt, 1972) are a type of finite mixture model (Wedel & Desarbo, 

1994). Other names used in the literature for finite mixture models include mixture 

models, latent class mixture models, latent class analysis, latent profile analysis, latent 

class regression models, RMMs, growth mixture models, hidden Markov models, hidden
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Markov regression, hidden time series. Thus, finite mixture models refer to a broad class 

of models which assume that a sample of observations is drawn from a pre-specified 

number of K latent classes with pre-specified distributions but unknown mixing (i.e., 

sampling) proportions between the classes (Wedel & DeSarbo, 1994). 

The purpose of using mixture models is to assign observations from a sample to 

the classes (i.e., mixing distribution) from which they were generated. In general, the 

sample decomposition approach of including mixture components (i.e., latent classes) 

from which individuals are drawn, has the benefit of detecting population heterogeneity. 

In cases where sample heterogeneity exists, two or more latent classes lead to a better fit 

and a more parsimonious model than assuming population homogeneity represented by 

one latent class. Aside from the ability to empirically uncover unhypothesized population 

heterogeneity, mixture models carry the added benefit of decreasing the error associated 

with the model by considering the differences between groups of individuals.  

In general, finite mixture models, assume that N multivariate observations Y 

belong to a superpopulation, with J independently and identically distributed (I.I.D) 

random variables (i.e., Y) that are generated from a finite number of, K, groups, in 

proportions (i.e., mixing weights) π1,…,πk. The mixing weights—prior probabilities used 

to assign observations to classes—are not known in advance, and generally fulfill the 

following: 

∑ 𝜋𝑠 = 1,   𝜋𝑘 > 0, 𝑘 = 1, … , 𝐾.
𝐾

𝑘=1
 

The mixture distributions (i.e., conditional densities) can belong to the same or different 

parametric families (i.e., normal, Poisson, gamma, binomial, etc.). It was assumed in this 
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study that conditional densities belong to the same— that is, normal—parametric family 

(although this is not required).  

RMMs can accommodate different types of predictors (e.g., dichotomous 

indicators, continuous predictors, etc.) and single or multivariate outcomes from one or 

multiple families. However, research to date has focused on models with conditional 

densities from the same parametric families. In general, the mixture modeling framework 

can be applied to any type of statistical model, as the procedure can simply be thought of 

as a method for decomposing any superpopulation into a mixture of distributions. For 

additional information, please refer to McLachlan and Peel (2000) for an in-depth review 

of finite mixture models.  

Focusing on RMMs, these models have also been referred to in the literature as 

latent class regression models or cluster-wise regression models (Späth, 1979). Latent 

regression models were specifically introduced by Quandt (1972), as switching 

regression models. This special type of finite mixture model arises from a univariate (i.e., 

J = 1) mixture of normal distributions in which the dependent variable y is regressed on 

predictors differentially across latent classes. Traditional mixture models involved 

parsing individuals into latent classes based on means and variances for a set of 

outcomes; whereas, regression mixtures simultaneously cluster individuals into latent 

classes with separate regression equations. Specifically, if a heterogeneous population 

(i.e., superpopulation) is composed of two homogenous subgroups, a mixture model can 

be used to simultaneously detect the two clusters of individuals and estimate the two 

corresponding regression equations, rather than having only one inadequate regression 

equation. RMMs take the following form: 
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yik = 𝛽0𝑘  + ∑ 𝛽𝑝𝑘𝑥𝑖𝑝 +  𝜀𝑖𝑘
𝑃
𝑝=1 , 

where yik is the value for a continuous outcome variable, y for the ith individual in the kth 

class, β0k is the intercept for the kth
 class, P is the number of predictors, xip is the value for 

the pth predictor variable, x for the ith individual, and εik is the random error for the ith 

individual in class k with k = 1, . . . , K, i = 1, . . ., n, and εik ~ N(0, σ2
k). 

Furthermore, the probability that a sample individual is a member of a particular 

class can be expressed as a function of covariates (Muthén & Asparouhov, 2009; Wedel, 

2002) specified by the following equation: 

Pr(𝑐𝑖 = 𝑘|𝑧𝑖) =  
exp (𝛼𝑘+ ∑ 𝛾𝑞𝑘𝑧𝑖𝑞)

𝑄
𝑞=1

∑ exp (𝛼𝑠 ∑ 𝛾𝑞𝑠𝑧𝑖𝑞)
𝑄
𝑞=1

𝐾
𝑠=1

 , 

where ci is the class-membership for the ith individual in the kth class, zi is the observed 

value of the covariate z for membership in the kth class for the ith individual, αk is the 

class-specific intercept, γk is the class-specific of effect of z. The predictors of class 

membership, z, can either be completely unique from the x predictors or they can partially 

or fully overlap (Muthén & Asparouhov, 2009; Wedel, 2002). In cases where there are no 

covariates predicting class-membership, the equation simplifies to the following: 

Pr(𝑐𝑖 = 𝑘|𝑧𝑖) =  
exp (𝛼𝑘)

∑ exp (𝛼𝑠)𝐾
𝑠=1

 . 

The use of latent variables is the most basic similarity between regression 

mixtures and related finite mixture models. Latent variables allow modeling of 

unobserved heterogeneity. Regression mixtures, like latent class analysis, use discrete 

latent variables referred to as latent classes. Practically, latent classes offer researchers 

the opportunity to separate a sample of individuals into subgroups based one or more 

variables. Specifically, regression mixtures explicitly model heterogeneity (i.e., 
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differential effects) by allowing intercepts, variances, and the effects of predictors on 

outcomes (i.e., slopes) and class membership to vary across latent classes.   

In cases where the Z and X variables either partially or fully overlap, meaning that 

X variables act as covariates (i.e., predictors of class membership), the assumption of 

equal means across classes is relaxed (Ingrassia, Minotti, & Vittadini, 2012). Thus, one 

can include a predictor, X, both as a predictor of Y and a predictor of class-membership. 

When X predicts Y, we refer to this as the Y on X path. When X predicts latent class 

membership, we refer to this as the C on X path, where C denotes the latent class 

variable.  

In RMMs, one is able include the latent class on predictor (i.e., C on X path), 

which suggests that the independent variable, X, helps to predict class membership and 

functionally allows the mean of the predictors to vary across latent classes (Lamont, 

Vermunt, & Van Horn, 2016). Functionally, the C on X path is included in regression 

mixtures in order to freely estimate the mean of the X (i.e., predictor) across latent 

classes. Substantively, however, the C on X path, should not be interpreted unless it is 

theoretically meaningful (Lamont, Vermunt, & Van Horn, 2016). 

 The C on X path may be included for multiple predictors, distinctly, whereby the 

researcher assumes that the predictors each have separate, unconstrained means across 

classes. Figure 2.1(a) shows a model where C determines the relationship between X and 

Y, but membership in the kth Class (i.e., C) is only determined by an individual’s value of 

Z. Figure 2.1(b) shows a model where C determines the relationship between X and Y, 

and membership in the kth Class (i.e., C) is determined by an individual’s value of X. 

Figure 1(c) shows a model where C determines the relationship between X and Y, and 
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membership in the kth Class (i.e., C) is determined by an individual’s values of both X and 

Z. 

    

2.1a—No C on X path, with Z (i.e., covariate)          2.1b—C on X path included; no Z 

 

 

 

 

 

    2.1c—C on X path included; with Z 

 

 

 

 

 

 

Figure 2.1: RMMs with and without an X predictor of class membership 

 

2.2 REGRESSION MIXTURE ASSUMPTIONS   

Regression mixtures, like other statistical models, follow assumptions. The most 

obvious assumption is that the individual observations emanate from smaller 

homogeneous subgroups (i.e., latent classes), which are unknown prior to estimation of 

the model. It follows that the assumptions which generally apply to the GLM also apply 
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to the individual latent classes. In the GLM, it is assumed that the all individuals have the 

same relationship between the predictor and the outcome; whereas, in the regression 

mixture all individuals within a latent class have the same relationship between the 

predictor and the outcome. Unlike GLM interactions, however, which require 

homogeneous residual variance across the entire population, regression mixtures allow 

heterogeneity of residual variances to differ across classes, but they require homogeneity 

of residual variance within class. As I mentioned earlier, RMMs considered here include 

mixtures of normal distributions, requiring the assumption of normality of errors. 

Previous work has demonstrated that regression mixtures are sensitive to violating the 

assumption of homogeneity of within-class residual variance (Van Horn et al., 2012).   

Although the number of classes, K, must be specified before estimating regression 

mixtures, researchers are able to freely estimate or constrain the class-specific intercepts, 

predictor slopes, predictor means, predictor variances, and residual variances. For 

example, suppose that a researcher specifies two classes before estimating a regression 

mixture with freely estimated intercepts, slopes, and residual variances while constraining 

the predictor means and variances. The results will feature two classes with separate 

linear equations, each differing based on their respective intercepts, slopes, and residual 

variances. However, the class equations will estimate the model assuming equal predictor 

means and variances. Taken together, class specific equations represent the mechanism 

by which regression mixtures measure differential effects or unobserved heterogeneity. 

When using regression mixtures, one assumes that a sample N is drawn from a population 

with K classes (i.e., sub-groups or sub-populations).   
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The process of choosing K—the number of classes—in a regression mixture 

model, is referred to as class enumeration. Class enumeration in RMMs is achieved 

through comparing some penalized information criterion across solutions with different 

values of K. Although the adjusted information criterion (AIC; Akaike, 1973) is 

commonly used for model selection, simulation studies have shown that AIC is upwardly 

biased with respect to class enumeration in mixture models (Nylund et al., 2007; Van 

Horn et al., 2009). Instead, researchers investigating class enumeration for regression 

mixture models have typically used the Bayesian Information Criterion (BIC; Schwarz, 

1978) and sample-size adjusted BIC (aBIC; Sclove, 1987). The BIC and aBIC, do not 

rely on specific sampling distributions, but rather the observed data, considering the 

likelihood function, the sample size, and the number of parameters; wherein, the model 

with the smallest BIC and aBIC is typically chosen. The BIC is formally defined by the 

following formula:  

BIC = ln(𝑛) 𝑞 − 2ln (�̂�), 

where n is the sample size, q is the number of parameters estimated in the model, and �̂� is 

the maximized value of the likelihood function. Both BIC and aBIC have been shown to 

be effective for class enumeration with mixture models (Van Horn et al., 2009). 

2.3 EMPIRICAL EXAMPLE 

To illustrate the information examined with a regression mixture model analysis, 

an applied example is provided. Consider a situation where researchers are interested in 

understanding how wages (dependent variable, Y) vary as a function of education and 

years of experience, and to see how these coefficients differ across gender. In a typical 

regression analysis and in a regression mixture where one assumes that the means of the 
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predictors are equal across subgroups , education and years of experience would be 

included in the equation as predictor (i.e., X) variables and gender would be included as a 

covariate (i.e., Z) variable, whereby only gender would predict class membership (C). 

However, it is not always the case that predictor distributions are equal across subgroups. 

Furthermore, in this applied example, a researcher may have reason to believe that 

different subgroups vary not only with respect to the relationships between the 

predictors—education and years of experience—but also with respect to the distributions 

of those predictors across subgroups. Therefore, one can estimate a regression mixture 

wherein any combination of, or none of the predictors and covariates are used to predict 

class membership. However, due to the inability to determine a priori whether a variable 

should be included as a predictor of class membership, two models were estimated—the 

first where only the X variables are included in the model and the second in which the X 

variables and the Z variable (i.e., gender) are included as the C on X paths. Then after the 

final number of classes is determined, the estimates from the model with both X variables 

and the Z variable included as predictors of class membership will be interpreted. Using 

the publicly available, 1985 Current Population Survey—Determinants of Wages data set 

(N = 534), RMMs with the following equation:  

Hourly Wageik = β0k + β1k*Education + β2k*Experience + β3k*Male + eik, 

In the following empirical example, the gender value for male = 1. For the entire sample, 

hourly wage ranges from 1 to 44.5 with a mean of 9.02. Education ranges from 2 to 18 

with a mean of 13. Years of experience ranges from 0 to 55 with a mean of 17.8.  

In order to determine the optimal number of classes, RMMs with one, two, and 

three classes (i.e., k = 1, 2, and 3) were estimated. First, enumeration, (i.e., the process 
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through which the optimal classes solution is chosen), was determined based on 

evaluations of BIC across all k solutions. After selection of the optimal solution, the 

parameters from the final model were examined, and individual regression models for the 

number of classes were reported. As noted, one set of models included only predictors 

(Xs and Z) measuring the dependent variable, wage (Y); the second set of models also 

included a model where gender (Z) is predicting the class(es) (C) and class determines the 

relationships between the predictors and the dependent variable (i.e., C on X paths). The 

final model contained class specific regression equations wherein education and years of 

experience predict hourly wage with, of course, a residual term 

Table 2.1 shows the BIC values from the models estimated with and without the 

C on X paths for the empirical example. Based on BIC, a penalized-likelihood approach, 

the two-class model, which indicates two underlying latent subgroups, was chosen as 

optimal. 

Table 2.1: BIC values for empirical example  

 BIC 

Number of Classes Without Covariates With Covariates 

1 3167.22 3138.14 

2 3048.25 2992.26 

3 Did not converge Did not converge 

 

At first glance, a researcher might assume that the two groups can be explained 

simply by the dichotomous gender covariate. However, a two-by-two cross tab with 

gender and most likely class membership based on posterior probability from the two-
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class model can be used to test how well gender functions as an observed covariate. If 

gender is a sufficient covariate, one would expect to see most women in one class and 

most men in the other. Table 2.2, the two-by-two cross tab for this example, does not 

show a clear separation based on gender.  

Table 2.2: Two-by-two crosstab for empirical example 

 Women Men 

Class 1 223 157 

Class 2 22 132 

 

The first class, which contains 71.2% of the overall sample—91% of the women and 

54.3% of the men—is characterized by a lower intercept, with a smaller slope associated 

with education and a larger slope associated with experience, compared to Class 2. The 

second class, which contains 28.8% of the overall sample—9% of women and 45.7% of 

men—is characterized by a lower intercept, with a higher slope associated with education 

and a smaller slope associated with experience compared with Class 1. Table 2.3 includes 

the estimated parameters from the two-class model.  

Table 2.3: Two-Class Model Estimates with C on X Paths Included 

 Mean SE 

Class 1   
Intercept .58 1.11 

Slope 1  0.42 0.09 

Slope 2 0.06 0.02 

Residual 5.80 0.08 

Education Mean -0.48 0.11 

Experience Mean -0.09 0.02 

Gender Mean -2.40 0.48 

Class 2   
Intercept 5.52 5.00 

Slope 1  0.61 0.26 

Slope 2 -0.02 0.08 

Residual 32.65 8.43 
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Regarding the distributions of the predictors, sample participants assigned to 

Class 2 had both higher average education and experience. While the means of the 

predictor distributions are somewhat similar, the variance of experience for Class 1 is 

156.15 while the variance for experience in Class 2 is 132.75. Individuals in Class 2, who 

have higher mean education and experience, with a smaller variance for years of 

experience show a stronger relationship between increased wages and education and 

years of experience.  

Findings from this example could point to a latent psychological component that 

might be associated with wage differences. This hypothesis may also be supported by 

results from Risse, Farrell, and Fry (2018), which suggest that personality traits and 

psychological constructs are better predictors of wages than what can simply be captured 

by gender alone. Specifically related to work, men tend to be higher in hope for success, 

lower in fear of failure, and lower in agreeableness, which are associated with higher 

wages (Risse, Farrell, & Fry, 2018). And although men more often tend to have 

personality traits associated with higher wages, women can also have the disposition that 

is associated with higher wages, which explains, in part, the crossover between men and 

women between the two classes. Note, however, that other variables (e.g., occupation 

type, geographic area, and race/ethnicity) are not included; it is reiterated that the purpose 

of the analysis was to provide an illustration of how to interpret regression mixture 

modeling analyses and not to test a specific theory. 

This example illustrates how an applied researcher might conduct an initial 

inquiry of effect heterogeneity. Prior to conducting a study that explicitly measured 

psychological constructs while recording observed wage, education, and experience data, 
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a researcher who conducted the example analysis would have the empirical evidence to 

support an investigation of latent constructs associated with wage differences. Based on 

the results from the example above, a methodological researcher might be inclined to 

study the effects of differences in predictor distributions on the ability of regression 

mixtures to enumerate and accurately estimate class-specific regression parameters.    

2.4 APPLIED STUDIES USING REGRESSION MIXTURES  

Regression mixtures, although they are relatively new to the social sciences, have 

been used to study several types of differential effects. In their original application, 

Quandt (1972) used regression mixtures to study heterogeneity in housing construction. 

These models have also been applied to wage prediction (Quandt & Ramsey, 1978), and 

trade show performance (DeSarbo & Cron, 1988). Marketing researchers have also 

employed regression mixtures in order to better understand consumer behavior through 

population segmentation (Cleaver & Wedel, 2001; Desarbo, Jedidi, & Sinha, 2001.) More 

recently, Van Horn and colleagues (2015) used regression mixtures in order to investigate 

the existence of effect heterogeneity in the relationship between parenting style and social 

skills and found differential effects beyond gender and ethnicity. Related to education, 

regression mixtures have also been used to understand the heterogeneity in the effect of 

family resources on academic achievement (Van Horn et al., 2009; Lamont, Vermunt, & 

Van Horn, 2016; Jaki et al., 2019). Van Horn and colleagues (2015) detail regression 

mixtures and demonstrate their utility in testing specific hypotheses about differential 

effects and exploring heterogeneous effects of predictors. Although there are numerous 

differences between the applications of regression interactions and regression mixtures, 
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regression mixtures do not require an observed predictor of differential effects (Van Horn 

et al., 2015).    

2.5 SIMULATION STUDIES OF REGRESSION MIXTURES  

When theory suggests that groups of individuals within a population are thought 

to have different relationships between a predictor and an outcome, effect heterogeneity 

can be investigated with GLM tests of interaction terms This traditional approach to 

studying effect heterogeneity relies on the inclusion of moderating variables (i.e., 

regression interactions). However, GLM interactions can fall short when effect 

heterogeneity exists beyond what is captured by a known variable Z (i.e., moderator) or 

the influential moderating variable has not been included in the model. In both cases, the 

larger heterogeneous population may contain multiple homogenous subgroups. If this is 

the case, the relationships between the predictors and outcome cannot be accurately 

modeled with one regression equation, because of an unmeasured latent dimension. Like 

the investigation of differential effects through regression interactions with a known 

covariate such as gender, which would involve two groups, regression mixtures first 

require specification of the number of homogeneous subgroups that emanate from the 

larger heterogeneous superpopulation. However, with regression mixtures, researchers do 

not presuppose that an observed variable, such as a gender covariate perfectly captures 

the heterogeneity that exists within a population. Rather, this process is initiated with 

theoretical justification and substantiated with empirical evidence. This process of 

determining the number of subgroups (i.e., classes) is known as enumeration. 

Furthermore, enumeration is a function of sample size, mixing weights, class separation, 

and predictors of class membership. Sample size refers to the size of the total sample, 
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from which the classes are to be identified. Mixing weights refer to the proportions of the 

total sample that are contained within each of the classes. Class separation refers to the 

identifiability of the latent classes—how distinct they are from each other based on each 

of the parameters—slopes, covariates (i.e., predictors of class membership), and 

residuals.  

Class membership is modeled in regression mixtures using covariates and C on X 

paths (i.e., the outcome, Y, is regressed on the predictor, X, and class, C, is also regressed 

on the predictor). Enumeration, which is the process of determining the k groups that 

represent the differential relationships between a set of predictors and an outcome across 

multiple latent classes in a regression mixture, is associated with the characteristics that 

define the subgroups within a superpopulation. Each of these characteristics contribute to 

the likelihood that a regression mixture can identify heterogeneity that exists within a 

sample and accurately describe their parameters.  

In order to determine the reliability of regression mixtures to accurately uncover 

heterogeneity within populations, methodological researchers have begun to use Monte 

Carlo studies to systematically investigate how different parameterizations affect 

enumeration and parameter recovery. Findings from these studies, specifically regarding 

their effects on enumeration and parameter recovery, are detailed below.  

Results from one such study investigating the effects of sample size on 

enumeration and parameter estimation in regression mixtures with one and two predictors 

found a direct relationship between class separation and the sample size needed to detect 

differential effects (Jaki et al, 2019). With little class separation, sample sizes of 3,000 

were required for correct enumeration using BIC alone. This large sample size was 
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needed regardless of whether the class sample sizes were balanced or unbalanced. 

However, Jaki and colleagues (2019) found that the smallest class in the three-class 

enumerated model often contained less than 10% of the individuals. Using 10% as the 

arbitrary criterion, they rejected the three-class model and accepted the two-class model 

when the smallest class contained less than 10% of individuals. Building on this concept, 

they recommended researchers be wary of the possibility of small classes representing a 

spurious finding and suggested that researchers consider both BIC and the proportion of 

the smallest class when enumerating (Jaki et al., 2019).  

Jaki and colleagues (2019) were also interested in class-assignment of individuals. 

With balances samples greater than 1,000, models tended to over-assign individuals to 

the class with the larger effect size. However, with, smaller, unbalanced samples (i.e., N 

= 200 and N = 500) biased assignment was somewhat different compared to larger 

samples. When 75% of individuals truly belong to the class with the larger effect size, 

results yielded biased assignment with samples of 500 and 250, such that individuals 

tended to be over-assigned to the class with the smaller effect size (Jaki et al., 2019). 

Concerning parameter estimation, parameter recovery for Class 1, containing the 

lower true slope value, had little bias. However, bias in all Class 2 (i.e., larger regression 

weight) parameters increased as the class separation decreased; wherein, the intercepts 

were upwardly biased (i.e., parameter estimates were higher than true values) while the 

regression weights and residual variances of were downwardly biased (i.e., lower than 

true values). It should also be noted that estimated standard errors of parameter estimates 

were too small, as evidenced by less than the target 95% coverage (i.e., estimate ± 1.96 

SE) for the slope parameters, even when sample size was larger than 1,000. Continuing 
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with the single predictor cases and large sample sizes (N ≥ 1,000), the distribution of the 

slope parameter was bimodal, with peaks around .2 and .7, (matching the population 

values—the simulated regression weights), with some outliers. However, cases with 500 

and 200 individuals returned unimodal slope distributions, which indicates 

indistinguishability between the two classes. 

 Concerning the effect of class separation on enumeration, results indicated that 

increasing the intercept difference from 0 in both classes to 0 in one class and to 1 and 

1.5 in the second class increased the percentage of correctly classified simulations to 70% 

and 95%, respectively. Returning to intercepts at zero for both classes and adding a 

second uncorrelated predictor with slope equal to the first predictor in each class (i.e., 

yi|c=1 = 0 + .2x1i + .2x2i + εi1; yi|c=2 = 0 + .7x1i + .7x2i + εi2) resulted in dramatic 

improvement in class enumeration. In conditions with equal (i.e., 50/50) and unequal 

(i.e., 75/25) sample proportions where class separation was due only to the differences in 

slopes between the two uncorrelated X predictors across classes (i.e., zero intercepts, 

equal residual variance, and equal predictor means and variances), the BIC correctly 

retrieved the two-class solution 97% of the time, even with samples as small as 500. 

Parameter coverage rates were only slightly less than 0.95 in the two predictor conditions 

with balanced and unbalanced samples of 500. (Jaki et al., 2019). Furthermore, when 

errors are normally distributed, there was an interaction between class separation and 

sample size on parameter recovery and class enumeration (Jaki et al., 2019).   

  Related to the inclusion of X variables as predictors of class membership, results 

from a study by Lamont, Vermunt, and Van Horn (2016) indicated that violating the 

equal predictor (i.e., X) means assumption and not including the C on X path was 
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associated with an increased probability of selecting additional latent classes and biased 

class proportions. In the same study, however, results suggested that incorrectly 

constraining the class predictor means (by not including the C on X path) rarely led to a 

substantively different interpretation of the solution (Lamont et al, 2016). Results from 

the applied portion of the study by Lamont and colleagues (2016) showed that parameter 

estimates tended to be generally similar with and without the C on X path, but standard 

errors were higher when the path was included.  The work by Lamont and colleagues 

(2016) shed some light on predictor mean differences across latent classes, but their study 

did not change both mean and variance values across classes.  

In a simulation study investigating the effect of constraining the variances of 

normally distributed class-specific residuals to be equal, results indicated that class 

enumeration with constrained residual variances was affected only as the difference in 

residual variances across classes increased (Kim et al., 2016). Moreover, when freely 

estimating residual variances with two uncorrelated predictors, selecting the correct 

number of classes was related to class separation. Specifically, greater class separation as 

indicated by larger differences in residual variances (i.e., equal to 1) led to correct 

enumeration more often across each of the three intercept difference conditions (i.e., 0, 

0.5, and 1) (Kim et al., 2016). However, in the study conducted by Kim and colleagues 

(2016), the moderate residual variance difference (i.e., 0.5) condition resulted in correct 

enumeration less often across all intercept differences compared to the conditions with no 

variance differences across classes. In terms of parameter estimation, results indicated 

that sample proportions and regression weights illustrated bias when unequal residual 

variances were constrained. Based on findings from their simulation study, Kim and 
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colleagues (2016) recommended that researchers freely estimate residual variances across 

classes, and only impose the residual variance constraint if the models with and without 

the constraint have similar fit and substantive interpretation. If models with and without 

the residual variance equality constraint have similar fit, but different substantive 

interpretations, researchers should proceed with caution.  

2.6 PURPOSE OF STUDY  

While regression mixture modeling may be a novel approach to dealing with 

effect heterogeneity, there has been limited study of these designs. Simulation studies 

involving RMMs in the literature have included one X variable (Van Horn et al., 2015; 

Lamont, Vermunt, & Van Horn, 2016; Jaki et al., 2019) or multiple X variables (i.e., 2, 

Kim et al., 2016; Jaki et al., 2019) in the regression equations. However, in studies 

involving multiple X variables, balanced samples (Kim et al, 2016; Jaki et al., 2019) and 

conditions of unbalanced samples where the greatest number of participants were 

generated from the equation with the larger slope (Jaki et al., 2019) are often used.  

Only one study has examined the effect of allowing the mean of the predictor to 

vary across latent classes, and each class equation only included one predictor (Lamont, 

Vermunt, & Van Horn, 2016). Although it is widely accepted that researchers should 

freely estimate the means of the X variables across classes in the model building process 

(Lamont, Vermunt, & Van Horn, 2016), no studies have examined the efficacy of RMMs 

when the variances of the X variables differ across classes. Jaki and colleagues (2019) 

only included unbalanced designs where the larger regression weights coincided with the 

larger sample proportion.  
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To address gaps in the current literature, this study will investigate 

parameterization issues in regression mixtures that will contribute to the field’s 

understanding of models that can be used to fine tune interventions and provide much 

needed improvements in approaches to identifying effect heterogeneity. Findings from 

this fully crossed simulation study will provide insight into the ability of mixture models 

to accurately detect subgroups and estimate differential effects among individuals when 

the following assumptions cannot be made: (a) equal-sized subgroups, (b) the largest 

subgroup had the largest slope, (c) the predictor means are equal across classes, and (d) 

the predictor variances are equal across classes. Results from this study will offer much 

needed insights into class enumeration and parameter recovery in regression mixtures 

when the means and variances of predictors are both equal and unequal, the mixing 

weights for the smaller and larger effect sizes are equal and unequal (i.e., 50/50; 25/75; 

75/25), and the C on X paths for two predictors are omitted and included. 

This study is important as it can contribute to the field’s understanding of how 

well regression mixtures recover classes and detect effect heterogeneity while accurately 

recovering the associated parameters. Testing the ability of RMMs to correctly enumerate 

and recover parameters associated with classes that vary in the predictor means and 

variances, when it is unknown whether the group with the greater response will represent 

the majority of the sample, is essential to understanding the limitations of these models. If 

the regression mixtures, based on the conditions in this study, show promise in retrieving 

and accurately describing subgroups that have different predictor distributions in addition 

to the differential effects, this will be a step forward in giving applied researchers the 

confidence to apply these RMMs. 
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CHAPTER 3 

METHODS 

This study investigated the accuracy of regression mixtures relative to the 

enumeration of classes (i.e., selecting the correct number of classes) and estimation of 

parameters across a variety of situations with the aim of understanding the effects of 

sample sizes, predictor means, and predictor variances. A simulation study was used for 

the investigations. As the purpose of this study was to ascertain the utility of regression 

mixtures in applied settings, these models were appraised, under the outlined conditions, 

based on how well they first enumerated the classes (i.e., correctly choose the number of 

classes from which the data originated) and then how well they retrieved the parameters 

associated with those population subgroups (i.e., slopes, residuals, etc.). This chapter 

details the population model of the regression mixture investigated, a description of the 

features manipulated in this simulation study, and a description of how the findings were 

evaluated. 

3.1 POPULATION MODEL  

The population (i.e., true) model that served as the basis for this simulation study 

is a two-class, two-predictor model. The parameters in each of the models include the Y-

intercept (i.e., β0), the slope for X1 (i.e., β1), the slope for X2 (i.e., β2), and the error term 

(i.e., ε). The general model with two classes and two predictors and equal residual 

variances can be written as
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 Class 1: yi|c=1 = β01 + β11X1i + β21X2i + εi1, εi1 ~ N(0, σ2) 

 Class 2: yi|c=2 = β02 + β12X1i + β22X2i + εi2, εi2 ~ N(0, σ2). 

As a simulation study contains an infinite number of conditions that can be manipulated, 

the following limitations were placed on the population model: the variance of Y equaled 

1 for every class in every condition and the difference between the intercepts was always 

1, with the second latent class always having the larger intercept. The differences in the 

residual variances and the intercepts were such that each class in each condition had 

Var(Y) = 1 to pinpoint the effects of manipulated features of interest—mixing weights, 

predictor distributions, and the omission and inclusion of C on X paths.   

In this study, there was no correlation between predictors within class (i.e., 

Pearson correlation coefficient r = 0), indicating the complete absence of 

multicollinearity. The outcome Y, with zero correlation between the predictors and (large) 

differences in the intercepts and residual variance across classes, was generated according 

to the following equations: 

 Class 1: yi|c=1 = 0 + .2x1i + .2x2i + εi1, ε1 ~ N(µ, σ2); 

 Class 2: yi|c=2 = 1 + .7x1i + .7x2i + εi2, ε2 ~ N(0, .02). 

Furthermore, each condition has Var(Y) = 1.  

Using Var(Y) = Var(X) + Var(E) with zero correlation between the predictors, we 

had two situations observed within the simulation. In conditions where the variances of 

all the X's equal 1, the residual variances for Class 1 = 0.92 and Class 2 = 0.02. This is the 

result of the equation above, where Var(Y) = 1 = .22 + .22 + .92. In conditions where 

Class 1|X1 had a variance of 2, the residual variance for class 1 = 0.84 and Class 2 = 0.02. 

This is the result of the equation Var(Y) = 1 = 2(.22) + 2(.22) + 0.84.  
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3.2 SIMULATION CONDITIONS   

Each of the simulation conditions contained a constant total sample size equal to 

500, an intercept difference equal to 1 across classes, and Var(Y) equal to 1 for each of 

the classes. The effects of the following characteristics on enumeration and parameter 

recovery were investigated: mixing weights, class separation, and predictors of class 

membership. Mixing weights refer to the proportions of the total sample that are 

contained within the classes. Class separation refers to the identifiability of the latent 

classes—how distinct they are from each other based on each of the parameters—slopes, 

covariates (i.e., predictors of class membership), and residuals. Class membership is 

modeled in regression mixtures using covariates and C on X paths (i.e., the class, C, is 

regressed on the outcome, Y, while Y is also regressed on X).  

3.3 DATA GENERATION AND SIMULATION 

 Data was generated using the software package R (see Appendix A) and all 

RMMs will be fit using Mplus. The Mplus software package (version 7.4; Muthén & 

Muthén, 1998-2015) was used for all analyses; wherein, model parameters were 

estimated using maximum likelihood with robust standard errors, as this is the default 

estimator for mixture models in Mplus. For each condition, 500 replications were 

computed and analyzed. Non-converging replications were recorded and removed from 

subsequent analyses.  

3.4 SAMPLE PROPORTIONS 

The first manipulated feature in the simulation was the proportion of the sample 

generated from each of the classes. This study featured three scenarios for sample size 

differences with the following proportions (i.e., Class1 percentage/Class 2 percentage) — 
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(1) 50/50; (2) 75/25; (3) 25/75. These unbalanced conditions were a direct extension of 

work by Jaki and colleagues (2019), who only used the 50/50 scenario and the 25/75 

split, where most of the individuals were assigned to the class with the larger regression 

weights. Building on the work by Jaki et al (2019), this study included conditions in 

which the smaller percentage of individuals are generated from the class with the larger 

regression weights.    

3.5 PREDICTOR MEAN DIFFERENCE 

The second manipulated feature in the study was the mean difference of the 

predictors. This study featured two scenarios for differences in the means of the X 

variables. The first predictor means difference scenario featured no mean difference 

across the latent classes for all X variables, whereby the means of both predictors in each 

of the classes was distributed as standard normal variates. The second predictor mean 

difference scenario featured a mean difference of 1 for X1 in Class 1 relative to its 

counterpart in Class 2. In the predictor mean discrepant condition, the X1 variable in 

Class 1 was distributed as N(1, variance depends on condition); whereas, the X1 variable 

in Class 2 was distributed as N(0, variance depends on condition). 

3.6 PREDICTOR VARIANCE DIFFERENCE 

The third manipulated feature in the proposed simulation was the difference in the 

variances of the predictors across classes. The first predictor variance scenario featured 

equal predictor variances across classes, wherein each predictor followed a standard 

normal distribution. The second predictor variance scenario featured a greater X1 variance 

in Class 1 relative to the X1 variable in Class 2. In the predictor variance discrepant 
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condition, the X1 variable in Class 1 was distributed as N(mean depends on condition, 2); 

whereas, the X1 variable in Class 2 was distributed as N(mean depends on condition, 1). 

3.7 TESTED MODELS   

RMMs with three sample proportion conditions, two predictor mean conditions, 

and two predictor variance conditions were analyzed under two possible conditions—(1) 

without C on X paths, where the X variables are not included as Z variables (i.e., 

covariates predicting class membership); and (2) with C on X paths, where the X 

variables also predict class membership (i.e., act as covariates). Correctly specified 

models, when predictor mean parameter estimation is congruent with the simulated 

data—(a) differing predictor mean parameters across classes are not constrained to be 

equal; and (b) equal predictor mean parameters across classes are constrained to be equal 

were specified in order to determine the utility of the C on X paths across several 

conditions. These comparisons will be essential for determining the effect of equality 

constraints on predictor means. With a total number of 24 conditions, the simulation 

study is fully crossed with respect to mixing weights (3 conditions), predictor mean 

differences (2 conditions), and predictor variance differences (2 conditions). Table 3.1 

includes a summary of the conditions manipulated in the simulation. The simulation code 

for Condition 1 is given in Appendix A.   

 

Table 3.1: Simulation conditions 

Condition Description  Mixing Weights 

No C on X Paths 
 

 

1 
All Xs ~ N(0, 1); 

εclass|1 ~ N(0, .92); εclass|2 ~ N(0, .02)  50/50 

2 
 

75/25 

3   25/75 
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4 
Class 1|X1 ~ N(0, 2); 

εclass|1 ~ N(0, .84); εclass|2 ~ N(0, .02)  50/50 

5 
 

75/25 

6   25/75 

7 
Class 1|X1 ~ N(1, 1); 

εclass|1 ~ N(0, .92); εclass|2 ~ N(0, .02)  50/50 

8 
 

75/25 

9   25/75 

10 Class 1|X1 ~ (1, 2); 50/50 

11 εclass|1 ~ N(0, .84); εclass|2 ~ N(0, .02)  75/25 

12   25/75 

C on X Paths Included 
 

 

13 

All Xs ~ N(0, 1); 

εclass|1 ~ N(0, .92); εclass|2 ~ N(0, .02)  50/50 

14 
 

75/25 

15   25/75 

16 
Class 1| X1 ~ N(0, 2); 

εclass|1 ~ N(0, .84); εclass|2 ~ N(0, .02)  50/50 

17 
 

75/25 

18   25/75 

19 
Class 1| X1 ~ N(1, 1); 

εclass|1 ~ N(0, .92); εclass|2 ~ N(0, .02)  50/50 

20 
 

75/25 

21   25/75 

22 
Class 1| X1 ~ N(1, 2); 

εclass|1 ~ N(0, .84); εclass|2 ~ N(0, .02)  50/50 

23 
 

75/25 

24   25/75 

 

3.8 OUTCOMES 

Regression mixtures for each of the conditions were estimated with k = 1, 2, and 

3. Then, for each of the conditions, the percentage of replications in which the BIC 

indicates the true two-class solution to have better relative fit over the one- and three-

class solutions were reported. For each of the replications in which the BIC correctly 

identifies the two-class solution as having the best relative fit, the mean parameter values, 

median standard errors, and 95% coverage rates will be reported for each of the 
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parameters in each of the conditions. In order to determine whether the inclusion of the C 

on X paths lead to be better parameter coverage (i.e., estimate ± 1.96 SE), proportion tests 

for the 95% coverages will be reported for each of the parameterizations with and without 

the C on X paths.   

Each condition will attempt to recover data generated from two latent classes, 

where each class included two predictors. In each condition, Class 1 had an intercept of 0 

and contain two predictors having slopes equal to 0.2; whereas, Class 2 will always have 

an intercept of 1 and two predictors with both variables having slopes equal to 0.7. 

Previous work by Jaki and colleagues (2019) found that when class separation was due 

only to the differences in slopes between the two uncorrelated X predictors across classes 

(i.e., zero intercepts, equal residual variance, and equal predictor means and variances), 

regression mixtures were correctly enumerated in 97% of replications using BIC alone, 

while obtaining 0.95 parameter coverage with the same sample size—in both balanced 

and unbalanced conditions. This proposed study will extend the work by Jaki and 

colleagues (2019) by varying predictor means, predictor variances, and sample 

proportions (i.e., smaller proportion associated with large and small effects classes).  

 In order to determine the impacts of the various model specifications for the 

crossed simulation conditions of the simulation conditions, this study examined two 

outcomes: a) class enumeration based on BIC, and b) recovery of parameter estimates 

(i.e., intercepts, slopes, residual variance, and predictor means). 

3.9 CLASS ENUMERATION  

In order to examine class enumeration, BIC values for the one-class solution vs. 

the two-class solution and the two-class solution vs. the three-class solution were 
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analyzed for every simulation condition. Therefore, the outcome of interest for the class 

enumeration portion of the study was the percentage of replications that chose the two-

class solution (i.e., correctly enumerated) based on BIC values. The accuracy of the 

RMMs in recovering parameters estimates for correctly enumerated models (i.e., BIC 

chose the two-class model over the one- and three-class models) were examined for 95% 

coverage when the models were estimated with and without the C on X paths.   

3.10 PARAMETER RECOVERY  

Comparing recovered parameters between the crossed conditions provided the 

opportunity to pinpoint how various parameterizations affect the efficacy of regression 

mixtures in capturing population heterogeneity. Estimated parameters for models in 

which the BIC selects the two-class solution were compared to the true parameter values. 

In order to analyze difference in 95% coverage rates between conditions with and without 

the C on X, twelve two-sample proportion tests were conducted for each parameter. The 

twelve two-sample tests were the result of comparing the two types of models (i.e.., with 

and without C on X paths) across all combinations of the following factors: (1) mixing 

weight for the smaller effect size class (i.e., three levels—.25, .50, and .75); (2) mean 

discrepancy in X1 across classes (i.e., two levels—0 and 1); (3) variance discrepancy in 

X1 across classes (i.e., two levels—1 and 2).  

3.11 SUMMARY 

The focus of this study was to determine the ability of regression mixtures to 

correctly enumerate classes and recover parameters representing distinct subgroups from 

heterogeneous populations using models with balanced and unbalanced sample 

proportions each having multiple predictors with equal and unequal means and variances. 
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This study included several conditions often encountered in practice by including the 

following characteristics: (a) multiple predictors, (b) unbalanced designs (in terms of 

sample size and parameter size), (c) differing predictor means across latent classes, and 

(d) differing predictor variances across latent classes. 

In summary, the simulation study consisted of a fully crossed design with 24 cells 

comprised of 3 sample proportions (i.e., 50/50, 75/25, 25/75) x 2 predictor mean 

conditions x 2 predictor variance conditions x 2 tested models (i.e., with and without C 

on X paths). Outcomes included enumeration (i.e., percentage of replications where the 

BIC correctly chooses two classes), parameter recovery (i.e., mean estimate, median 

estimate, median standard error, 95% coverage rate for each parameter, and proportion 

tests to distinguish statistical significance in 95% coverage across models with and 

without C on X paths. 
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CHAPTER 4 

RESULTS 

 Results from the simulation, including convergence rates, enumeration, and 

parameter recovery, are detailed in this chapter. Overall, the results point to the need for 

researchers to enumerate without C on X paths, as evidenced by the overall correct 

enumeration rates for models without C on X paths across all conditions. This result was 

especially apparent when the true variances of predictors vary across classes.  

4.1 CONVERGENCE RATES  

 Overall, the convergence rates for all conditions were equal to or exceeded 99%. 

Convergence rates for each of the conditions without the C on X paths were greater than 

.99 for all values of K. Convergence rates for models with the C on X paths were 1 for all 

conditions when k =1 and k=2. The minimum convergence rate for k=3 when the C on X 

paths were included was .99. Table 4.1 shows the specific convergence rates by 

condition. 

4.2 CLASS ENUMERATION  

The first outcome of interest in this simulation study was class enumeration. Class 

enumeration, which is related to determining the number of underlying subpopulations 

within the sample, was determined using a penalized likelihood criterion—namely, BIC. 

Table 4.2 contains (1) the percentages of replications wherein the BIC chose the two-



www.manaraa.com

 

40 

class solution over the one- and three-class solutions; and (2) percentages of replications 

wherein the BIC chose the three-class solution over the two-class solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, conditions 1-12, which did not include the C on X paths correctly enumerated 

with BIC more often than the models including the C on X paths. However, when there 

was not a predictor variance discrepancy—either with or without a predictor mean 

difference—the models with the C on X paths resulted in correct enumeration slightly 

more often. The lowest correct enumeration rate was 95% across conditions 1-12 (i.e., No 

Table 4.1: Model converge rates by condition  

Condition One-Class Two-Class Three-Class 

1 1 1 0.998 

2 1 1 0.994 

3 1 1 1 

4 1 1 0.996 

5 1 1 0.998 

6 1 1 1 

7 1 1 0.998 

8 1 1 0.996 

9 1 1 0.998 

10 1 1 0.998 

11 1 1 1 

12 1 1 0.998 

13 1 1 0.998 

14 1 1 0.998 

15 1 1 1 

16 1 1 0.998 

17 1 1 0.99 

18 1 1 1 

19 1 1 0.998 

20 1 1 0.994 

21 1 1 1 

22 1 1 0.998 

23 1 1 0.996 

24 1 1 0.998 
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C on X paths), while the lowest correct enumeration for the conditions 13-24 (i.e., 

including the C on X paths) was 60.6%.  

This difference in enumeration is more apparent in the predictor variance 

discrepant conditions. Specifically, conditions 4-6 and 10-12 yielded correct enumeration 

equal to or above 95% of the replications as compared to conditions 16-18 and 22-24 

(which included the C on X paths) where the two-class solution was optimal between 

60.6% and 68.4% of the time. Even though there were discrepant variances across the X1 

predictor in conditions 4-6 and discrepant X1 means and variances in conditions 10-12, 

not including the C on X paths led to correct enumeration more often than in conditions 

16-18 and 22-24 when the predictors were included as covariates. The advantage of not 

including the X variables as covariates predicting class membership was highlighted 

when the mixing weights were 50/50 and 25/75. Therefore, the difficulty of correctly 

enumerating regression mixtures when including covariates is compounded when the 

mixing weight associated with the smaller effect size class is either equal to or smaller 

than the mixing weight associated with larger effect size class.  

Table 4.2: Enumeration using BIC for all conditions 

Cond. X values  Mix BIC chose 2 over 1 and 3 BIC chose 3 over 2 

No C on X Paths 

1 

All Xs ~  

N(0, 1) 50/50 0.972 0.028 

2  75/25 0.962 0.038 

3  25/75 0.988 0.012 

4 

Class 1| 

X1 ~ N(0, 2) 50/50 0.976 0.024 

5   75/25 0.972 0.028 

6   25/75 0.964 0.036 

7 

Class 1| 

X1 ~ N(1, 1) 50/50 0.97 0.03 

8  75/25 0.974 0.026 
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9  25/75 0.97 0.03 

10 

Class 1| 

X1 ~ N(1, 2) 50/50 0.974 0.026 

11   75/25 0.962 0.038 

12   25/75 0.95 0.05 

C on X Paths Included 

13 

All Xs ~  

(0, 1) 50/50 
0.996 0.004 

14  75/25 0.998 0.002 

15  25/75 0.994 0.006 

16 

Class 1| 

X1 ~ N(0, 2) 50/50 
0.606 0.394 

17   75/25 0.684 0.316 

18   25/75 0.624 0.376 

19 

Class 1| 

X1 ~ N(1, 1) 50/50 
0.99 0.01 

20  75/25 0.998 0.002 

21  25/75 0.998 0.002 

22 

Class 1| 

X1 ~ N(1, 2) 50/50 
0.636 0.364 

23   75/25 0.682 0.318 

24   25/75 0.664 0.336 

     

The second outcome of interest in this simulation study was parameter recovery 

when the BIC chose the two-class solution. Table 4.3 contains the recovered parameters 

for conditions 1-12 (i.e., conditions which did not include the C on X paths) for 

replications where the BIC chose the two-class solution.  

Intercept coverage values were high (i.e., above .90) when there was no predictor 

mean difference. However, the coverage rates for the Class 1 intercept suffered when 

there was a predictor mean difference (95% coverage ranging from .83 to .87). In general, 

coverage rates were higher for recovering the Class 2 intercept values (95% coverage 

ranging from .94 to .96), where there was never a predictor mean difference that would 
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necessitate inclusion of the C on X paths. The lowest coverage was observed with Class 1 

conditions including a mean difference in the X1 parameter. In these situations, the true 

population value was captured within the 95% coverage interval only 76% of the time 

when no X1 predictor variance difference was present and 83% of the time with an X1 

predictor variance difference. Residual variance coverages were higher across both 

classes with a correctly specified predictor mean equality (95% coverage ranging from 

.88 to .95), compared to conditions with an incorrectly specified predictor mean equality 

(95% coverage ranging from .71 to .90).  All the median parameter estimates were close 

to the mean parameter estimates, indicating an approximate normal distribution for the 

estimated parameters. 

Table 4.3: Parameter estimates for conditions 1-12 (Predictors not included as                                  

covariates) 

  50/50 75/25 25/75 

 True  

Mean 

Med  SE 

95 

Cov 

Mean 

Med SE 

95 

Cov 

Mean 

Med SE 

95 

Cov 

All X Predictor Distributions Equal X ~ N(0,1); No C on X Paths 

Class 1           
Int 0.00 0.00 

0.00 0.07 0.94 

0.00 

0.00 0.05 0.94 

-0.01 

-0.01 0.09 0.95 

Slope 1  0.20 0.20 

0.20 0.06 0.95 

0.20 

0.20 0.05 0.92 

0.20 

0.21 0.09 0.93 

Slope 2 0.20 0.20 

0.20 0.06 0.94 

0.20 

0.20 0.05 0.95 

0.20 

0.20 0.09 0.93 

Resid 0.92 0.91 

0.91 0.08 0.93 

0.91 

0.91 0.07 0.95 

0.88 

0.88 0.11 0.89 

Class 2                     

Int 1.00 1.00 

1.00 0.01 0.96 

1.00 

1.00 0.02 0.95 

1.00 

1.00 0.01 0.94 

Slope 1  0.70 0.70 

0.70 0.01 0.95 

0.70 

0.70 0.02 0.95 

0.7 

0.7 0.01 0.94 

Slope 2 0.70 0.70 

0.70 0.01 0.93 

0.70 

0.70 0.02 0.92 

0.70 

0.70 0.01 0.95 

Resid 0.02 0.02 

0.02 0 0.93 

0.02 

0.02 0.00 0.89 

0.02 

0.02 0.00 0.96 
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Class 1| X1 Variance Increase to X ~ N(0, 2); All Equal X Means; No C on X Paths  

Class 1           
Int 0.00 0.02 

0.01 0.06 0.91 

0.01 

0.01 0.05 0.93 

0.03 

0.03 0.09 0.92 

Slope 1  0.20 0.19 

0.19 0.04 0.93 

0.19 

0.19 0.03 0.93 

0.19 

0.19 0.06 0.94 

Slope 2 0.20 0.20 

0.20 0.06 0.94 

0.20 

0.20 0.05 0.95 

0.20 

0.20 0.09 0.92 

Resid 0.84 0.84 

0.84 0.08 0.94 

0.84 

0.83 0.06 0.94 

0.82 

0.81 0.10 0.92 

Class 2                     

Int 1.00 1.00 

1.00 0.01 0.94 

1.00 

1.00 0.02 0.94 

1.00 

1.00 0.01 0.95 

Slope 1  0.70 0.70 

0.70 0.01 0.95 

0.70 

0.70 0.02 0.93 

0.70 

0.70 0.01 0.94 

Slope 2 0.70 0.70 

0.70 0.01 0.94 

0.70 

0.70 0.02 0.95 

0.70 

0.70 0.01 0.95 

Resid 0.02 0.02 

0.02 0.00 0.92 

0.02 

0.02 0.00 0.89 

0.02 

0.02 0.00 0.95 

Class 1 | X1 Mean Increase to X ~ N(1, 1); All Equal X Variances; No C on X Paths 

Class 1           
Int 0.00 0.07 

0.07 0.08 0.84 

0.06 

0.06 0.07 0.83 

0.09 

0.09 0.10 0.84 

Slope 1 0.20 0.14 

0.14 0.05 0.76 

0.15 

0.15 0.04 0.75 

0.12 

0.12 0.07 0.78 

Slope 2 0.20 0.24 

0.24 0.06 0.91 

0.23 

0.22 0.05 0.88 

0.25 

0.24 0.09 0.92 

Resid 0.92 0.85 

0.86 0.08 0.79 

0.87 

0.87 0.07 0.80 

0.83 

0.82 0.11 0.81 

Class 2                     

Int 1.00 1.00 

1.00 0.01 0.94 

1.00 

1.00 0.02 0.95 

1.00 

1.00 0.01 0.93 

Slope 1 0.70 0.70 

0.70 0.01 0.94 

0.70 

0.70 0.02 0.94 

0.70 

0.70 0.01 0.93 

Slope 2 0.70 0.70 

0.70 0.01 0.96 

0.70 

0.70 0.02 0.95 

0.70 

0.70 0.01 0.93 

Resid 0.02 0.02 

0.02 0.00 0.85 

0.02 

0.02 0.00 0.79 

0.02 

0.02 0.00 0.84 

Class 1 | X1 Mean and Variance Increase to X ~ N(1, 2); No C on X Paths 

Class 1           
Int 0.00 0.06 

0.06 0.07 0.87 

0.05 

0.05 0.06 0.86 

0.07 

0.07 0.10 0.87 

Slope 1 0.20 0.16 

0.16 0.04 0.83 

0.17 

0.17 0.03 0.85 

0.16 

0.16 0.05 0.85 

Slope 2 0.20 0.23 0.06 0.92 0.22 0.05 0.90 0.24 0.08 0.91 
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0.23 0.22 0.24 

Resid 0.84 0.79 

0.79 0.07 0.86 

0.81 

0.81 0.06 0.90 

0.77 

0.77 0.10 0.81 

Class 2                     

Int 1.00 1.00 

1.00 0.01 0.96 

1.00 

1.00 0.02 0.96 

1.00 

1.00 0.01 0.94 

Slope 1 0.70 0.70 

0.70 0.01 0.95 

0.69 

0.69 0.02 0.90 

0.70 

0.70 0.01 0.95 

Slope 2 0.70 0.70 

0.70 0.01 0.95 

0.70 

0.70 0.02 0.92 

0.70 

0.70 0.01 0.93 

Resid 0.02 0.02 

0.02 0 0.79 

0.02 

0.02 0.00 0.71 

0.02 

0.02 0.00 0.85 

 

Table 4.4 contains the recovered parameters for conditions 13-24 (i.e., included C 

on X paths) for replications where the BIC chose the two-class solution. Overall, the 

models with the C on X paths yielded higher 95% coverage rates for the parameters in 

common with the models without the C on X paths. Again, all median parameter 

estimates were close to the mean parameter estimates, providing no blatant evidence 

against normality. 

 

Table 4.4: Parameter estimates for conditions 13-24 (Predictors included as covariates) 

  50/50 75/25 25/75 

 True  

Mean 

Med  SE 

95 

Cov 

Mean 

Med SE 

95 

Cov 

Mean 

Med SE 

95 

Cov 

All X Predictor Distributions Equal X ~ N(0,1); C on X Paths 

Class 

1           
Int 0.00 0.00 

-0.01 

0.07 0.94 0.00 

0.00 

0.05 0.97 -0.01 

0.00 

0.10 0.93 

Slope 

1  

0.20 0.20 

0.20 

0.06 0.94 0.20 

0.20 

0.05 0.95 0.20 

0.20 

0.09 0.96 

Slope 

2 

0.20 0.20 

0.20 

0.06 0.94 0.20 

0.20 

0.05 0.94 0.20 

0.20 

0.09 0.94 

Resid 0.92 0.91 

0.90 

0.08 0.91 0.91 

0.91 

0.07 0.92 0.90 

0.90 

0.12 0.91 

X1 0.00 -0.01 

0.00 

0.11 0.97 0.00 

0.00 

0.14 0.95 0.00 

0.00 

0.12 0.96 

X2 0.00  0.01 0.11 0.95 0.01 0.14 0.94 -0.01 0.12 0.96 
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0.02 0.01 -0.01 

Class 

2 

  

  

    

  

          

Int 1.00 1.00 

1.00 

0.01 0.92 1.00 

1.00 

0.02 0.96 1.00 

1.00 

0.01 0.96 

Slope 

1  

0.70 0.70 

0.70 

0.01 0.93 0.70 

0.70 

0.02 0.95 0.70 

0.70 

0.01 0.95 

Slope 

2 

0.70 0.70 

0.70 

0.01 0.94 0.70 

0.70 

0.02 0.92 0.70 

0.70 

0.01 0.96 

Resid 0.02 0.02 

0.02 

0.00 0.92 0.02 

0.02 

0.00 0.93 0.02 

0.02 

0.00 0.94 

Class 1| X1 Variance Increase to X ~ N(0, 2) with All Equal X Means; C on X Paths 

Class 

1           
Int 0.00 0.02 

0.02 

0.06 0.95 0.01 

0.01 

0.05 0.95 0.02 

0.03 

0.09 0.94 

Slope 

1  

0.20 0.20 

0.19 

0.04 0.96 0.20 

0.19 

0.04 0.94 0.19 

0.19 

0.06 0.92 

Slope 

2 

0.20 0.19 

0.20 

0.06 0.92 0.20 

0.20 

0.05 0.94 0.20 

0.20 

0.09 0.95 

Resid 0.84 0.84 

0.83 

0.08 0.94 0.84 

0.83 

0.06 0.94 0.81 

0.80 

0.10 0.89 

X1 0.00 0.02 

0.02 

0.08 0.92 0.03 

0.03 

0.08 0.89 0.01 

0.01 

0.12 0.92 

X2 0.00 -0.01 

-0.02 

0.11 0.96 -0.01 

-0.01 

0.14 0.96 0.00 

0.00 

0.12 0.98 

Class 

2 

                    

Int 1.00 1.00 

1.00 

0.01 0.95 1.00 

1.00 

0.02 0.96 1.00 

1.00 

0.01 0.94 

Slope 

1  

0.70 0.70 

0.70 

0.01 0.94 0.70 

0.70 

0.02 0.92 0.70 

0.70 

0.01 0.94 

Slope 

2 

0.70 0.70 

0.70 

0.01 0.92 0.70 

0.70 

0.02 0.95 0.70 

0.70 

0.01 0.95 

Resid 0.02 0.02 

0.02 

0.00 0.89 0.02 

0.02 

0.00 0.89 0.02 

0.02 

0.00 0.93 

Class 1| X1 Mean Increase to X ~ N(1, 1); All Equal X Variances; C on X Paths  

Class 

1           
Int 0.00 0.01 

0.01 

0.09 0.95 0.00 

0.00 

0.08 0.95 -0.02 

-0.02 

0.13 0.92 

Slope 

1  

0.20 0.20 

0.19 

0.06 0.97 0.20 

0.20 

0.05 0.95 0.20 

0.20 

0.09 0.93 

Slope 

2 

0.20 0.20 

0.20 

0.06 0.96 0.20 

0.20 

0.05 0.94 0.20 

0.20 

0.09 0.95 
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Resid 0.92 0.91 

0.91 

0.09 0.93 0.92 

0.91 

0.07 0.94 0.89 

0.89 

0.12 0.90 

X1 1.00 0.32 

0.91 

0.13 0.62 0.31 

0.89  

0.16 0.62 0.18 

0.89 

0.14 0.57 

X2 0.00 0.00 

-0.01 

0.12 0.95 0.00 

0.01 

0.15 0.94 0.01 

0.01 

0.13 0.95 

Class 

2 

                    

Int 1.00 1.00 

1.00 

0.01 0.94 1.00 

1.00 

0.02 0.95 1.00 

1.00 

0.01 0.95 

Slope 

1  

0.70 0.70 

0.70 

0.01 0.94 0.70 

0.70 

0.02 0.94 0.70 

0.70 

0.01 0.95 

Slope 

2 

0.70 0.70 

0.70 

0.01 0.95 0.70 

0.70 

0.02 0.95 0.70 

0.70 

0.01 0.95 

Resid 0.02 0.02 

0.02 

0.00 0.92 0.02 

0.02 

0.00 0.92 0.02 

0.02 

0.00 0.93 

Class 1 | X1 Mean and Variance Increase to X ~ N(1, 2); C on X Paths 

Class 

1           
Int 0.00 0.01 

0.01 

0.08 0.93 0.02 

0.02 

0.06 0.94 0.01 

0.01 

0.12 0.97 

Slope 

1  

0.20 0.20 

0.20 

0.04 0.92 0.19 

0.19 

0.04 0.95 0.2 

0.2 

0.06 0.95 

Slope 

2 

0.20 0.20 

0.20 

0.06 0.95 0.20 

0.20 

0.05 0.94 0.19 

0.19 

0.09 0.94 

Resid 0.84 0.83 

0.83 

0.08 0.91 0.84 

0.83 

0.06 0.96 0.82 

0.81 

0.11 0.91 

X1 1.00 0.16 

0.61 

0.10 0.15 0.25 

0.56 

0.10 0.06 0.04 

0.61 

0.13 0.36 

X2 0.00 0.00 

0.01 

0.11 0.95 -0.01 

-0.01 

0.14 0.97 0.01 

0.02 

0.13 0.96 

Class 

2 

                    

Int 1.00 1.00 

1.00 

0.01 0.95 1.00 

1.00 

0.02 0.94 1.00 

1.00 

0.01 0.95 

Slope 

1  

0.70 0.70 

0.70 

0.01 0.94 0.70 

0.70 

0.02 0.93 0.70 

0.70 

0.01 0.95 

Slope 

2 

0.70 0.70 

0.70 

0.01 0.95 0.70 

0.70 

0.02 0.96 0.70 

0.70 

0.01 0.92 

Resid 0.02 0.02 

0.02 

0.00 0.92 0.02 

0.02 

0.00 0.92 0.02 

0.02 

0.00 0.95 
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4.3 PROPORTION TESTS OF COVERAGE RATES 

Two models were estimated in this study—models with and without C on X paths 

for the predictors.  Overall, models including the additional covariate path appeared to 

have better coverage across most conditions, proportion tests were used to better pinpoint 

potential differences in the 95% coverage rates between the models across conditions. 

For conditions with and without the C on X, 12 two-sample proportion tests were 

conducted for each parameter. These tests serve to infer  

The twelve two-sample tests were the result of comparing the two types of models 

(i.e.., with and without C on X paths) across all combinations of the following factors: (1) 

mixing weight for the smaller effect size class (i.e., three levels—.25, .50, and .75); (2) 

mean discrepancy in X1 across classes (i.e., two levels—0 and 1); (3) variance 

discrepancy in X1 across classes (i.e., two levels—1 and 2).  

Table 4.5 contains the 95% confidence intervals for the differences in the 

proportions between the 95% coverage rates for the models with and without the C on X 

paths. A negative difference value indicates that the coverage rate from the model with 

the C on X paths had a higher coverage rate, while a positive value indicates that the 

model without C on X paths had a higher coverage rate.  

The differences in parameter coverage, especially for Class 1 intercepts, Class 

1|X1 slopes, Class 1|X2 slopes, Class 1 residual variances, and Class 2 residual variances 

are more evident when there was an X1 mean difference. The model with the C on X paths 

resulted in significantly better coverage rates for 6/6 Class 1 intercepts, 6/6 X1 slope 

parameters, 2/3 of the X2 slope parameters, 5/6 of the Class 1 residual variances, and 6/6 

Class 2 residual variances when the population models contained predictor mean 
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differences. Of all the significant differences, there was only one in which the model 

without the C on X paths resulted in better coverage—class 2 intercept in condition 1 vs. 

condition 13. This finding makes sense because there was no mean difference between 

the predictors across classes in this condition. However, there were many more instances 

in which the models including the C on X paths led to better parameter recovery, 

especially in conditions where the predictors associated with β1 had different means 

across classes. Between the models with and without the C on X paths, the confidence 

intervals for the differences in the 95% coverage rates for the slope of X1 ranged in 

magnitude from 4% for the lower bound to 25% for the upper bound.  

Table 4.5: Confidence intervals from proportion tests for coverage rates 

Class 1         

Condition Int L Int U X1 L X1 U X2 L X2 U 

Resid 

L 

Resid 

U 

1 v 13 -0.02 0.04 -0.02 0.04 -0.03 0.04 -0.01 0.06 

2 v 14 -0.05 0.00 -0.07 0.00 -0.02 0.04 -0.01 0.06 

3 v 15 -0.01 0.05 -0.07 -0.01 -0.04 0.03 -0.06 0.02 

4 v 16 -0.07 0.00 -0.06 0.00 -0.02 0.06 -0.04 0.03 

5 v 17 -0.05 0.02 -0.04 0.03 -0.03 0.04 -0.03 0.04 

6 v 18 -0.06 0.02 -0.02 0.06 -0.06 0.01 -0.01 0.07 

7 v 19 -0.15 -0.07 -0.24 -0.16 -0.08 -0.02 -0.18 -0.09 

8 v 20  -0.16 -0.08 -0.25 -0.16 -0.09 -0.02 -0.18 -0.09 

9 v 21  -0.12 -0.04 -0.20 -0.11 -0.06 0.00 -0.14 -0.05 

10 v 22 -0.10 -0.02 -0.14 -0.04 -0.07 0.00 -0.10 0.00 

11 v 23 -0.10 -0.01 -0.14 -0.06 -0.09 -0.01 -0.09 -0.02 

12 v 24 -0.14 -0.06 -0.14 -0.06 -0.07 0.01 -0.14 -0.05 

 

Class 2         

Condition Int L Int U X1 L X1 U X2 L X2 U 

Resid 

L 

Resid 

U 

1 v 13 0.01 0.07 -0.01 0.05 -0.03 0.03 -0.02 0.05 

2 v 14 -0.04 0.01 -0.02 0.04 -0.03 0.03 -0.07 0.00 

3 v 15 -0.05 0.01 -0.04 0.02 -0.04 0.02 -0.01 0.04 

4 v 16 -0.04 0.03 -0.03 0.04 -0.02 0.06 -0.01 0.08 
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5 v 17 -0.05 0.02 -0.03 0.05 -0.03 0.03 -0.03 0.03 

6 v 18 -0.02 0.05 -0.03 0.04 -0.04 0.03 -0.01 0.06 

7 v 19 -0.03 0.03 -0.03 0.03 -0.02 0.03 -0.11 -0.03 

8 v 20  -0.03 0.03 -0.03 0.03 -0.02 0.03 -0.18 -0.09 

9 v 21  -0.05 0.01 -0.05 0.01 -0.06 0.01 -0.13 -0.05 

10 v 22 -0.02 0.04 -0.03 0.04 -0.03 0.03 -0.18 -0.09 

11 v 23 -0.01 0.05 -0.07 0.02 -0.07 0.00 -0.27 -0.16 

12 v 24 -0.05 0.02 -0.04 0.03 -0.03 0.05 -0.14 -0.05 

Note. Bold values indicate significant differences at α = .05.  

Convergence rates for all conditions were equal to or greater than .99, which 

suggests that the conditions supported subsequent analyses. Overall, conditions 1-12, 

which did not include the C on X paths correctly enumerated with BIC more often than 

the models including the C on X paths. This difference in enumeration is more apparent 

in the predictor-variance discrepant conditions. Specifically, conditions 4-6 and 10-12 all 

had correct enumeration greater than or equal to 98% as compared to conditions 16-18 

and 22-24 (which included the C on X paths) where the two-class solution was identified 

between 60.6% and 68.4% of the time. The advantage of not including the X variables as 

covariates predicting class membership was highlighted when the mixing weights were 

50/50 and 25/75. Therefore, the difficulty of correctly enumerating regression mixtures 

when including covariates is compounded when the mixing weight associated with the 

smaller effect size class is either equal to or smaller than the mixing weight associated 

with larger effect size class. Overall, the models with the C on X paths had better 95% 

coverage rates for the parameters in common with the models without the C on X paths. 

The differences in parameter coverage, especially for class 1 intercepts, Class 1| X1 

slopes, Class 1| X2 slopes, Class 1 residual variances, and Class 2 residual variances are 

more evident when there is an X1 mean difference. There was an especially important 
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finding related to the ability of models with C on X paths led to recover slopes from 

predictors with mean shifts across classes. The confidence intervals for the differences in 

the 95% coverage rates for the slope of the Xs, when the associated X1 predictors had 

different variances across classes, ranged in magnitude from 4% for the lower bound to 

25% for the upper bound. 

4.4 INCLUDING C ON X PATHS AFTER ENUMERATION  

 As a follow-up to investigating the feasibility of including C on X paths after 

enumeration without those paths, models including C on X paths for both predictors were 

estimated for the same data sets generated for cases 1-12. This examination serves as 

another test aimed at ruling out the possibility that the overall improved parameter 

coverages when including the C on X paths after enumeration was an anomalous finding 

(i.e., simply a function of the data sets generated for cases 1-12). Table 4.6 shows the 

results from the two-class models with C on X paths that were estimated for the data 

originally generated for conditions 1-12. The models with C on X paths do not appear to 

be any worse at parameter recovery, as evidenced by the 95% coverage rates, than the 

models not including the C on X paths.  

Table 4.6: Two-class models with C on X paths using data from cases 1-12  

  50/50 75/25 25/75 

 True  

Mean 

Med  SE 

95 

Cov 

Mean 

Med SE 

95 

Cov 

Mean 

Med SE 

95 

Cov 

All X Predictor Distributions Equal X ~ N(0,1); C on X Paths 

Class 

1           
Int 0.00  0.00 

0.00 

0.07 0.94 0.00 

0.00 

0.05 0.94 -0.01 

-0.01 

0.09 0.95 

Slope 

1  

0.20 0.20 

0.20 

0.06 0.95 0.20 

0.20 

0.05 0.92 0.20 

0.21 

0.09 0.92 

Slope 

2 

0.20 0.20 

0.20 

0.06 0.93 0.20 

0.20 

0.05 0.95 0.20 

0.20 

0.09 0.93 
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Resid 0.92 0.91 

0.91 

0.08 0.93 0.91 

0.91 

0.07 0.94 0.88 

0.88 

0.12 0.90 

X1 0.00 0.01 

0.01 

0.11 0.95 0.01 

0.01 

0.14 0.95 -0.01 

0.00 

0.12 0.94 

X2 0.00 -0.01 

-0.01 

0.11 0.96 0.00 

0.00 

0.14 0.96 0.00 

0.00 

0.12 0.95 

Class 

2 

                    

Int 1.00 1.00 

1.00 

0.01 0.96 1.00 

1.00 

0.02 0.95 1.00 

1.00 

0.01 0.94 

Slope 

1  

0.70 0.70 

0.70 

0.01 0.95 0.70 

0.70 

0.02 0.95 0.70 

0.70 

0.01 0.94 

Slope 

2 

0.70 0.70 

0.70 

0.01 0.94 0.70 

0.70 

0.02 0.93 0.70 

0.70 

0.01 0.95 

Resid 0.02 0.02 

0.02 

0.00 0.93 0.02 

0.02 

0.00 0.89 0.02 

0.02 

0.00 0.95 

Class 1| X1 Variance Increase to X ~ N(0, 2) with All Equal X Means; C on X Paths 

Class 

1           
Int 0.00 0.01 

0.01 

0.06 0.92 0.01 

0.01 

0.05 0.93 0.03 

0.03 

0.09 0.92 

Slope 

1  

0.20 0.19 

0.19 

0.04 0.93 0.2 

0.2 

0.04 0.93 0.19 

0.19 

0.06 0.94 

Slope 

2 

0.20 0.20 

0.20 

0.06 0.94 0.2 

0.2 

0.05 0.95 0.20 

0.20 

0.09 0.93 

Resid 0.84 0.84 

0.84 

0.08 0.94 0.84 

0.83 

0.06 0.94 0.82 

0.81 

0.10 0.93 

X1 0.00 0.02 

0.03 

0.08 0.93 0.03 

0.03 

0.08 0.90 0.01 

0.00 

0.12 0.94 

X2 0.00 -0.01 

-0.01 

0.11 0.95 0.00 

-0.01 

0.14 0.94 -0.01 

0.00 

0.12 0.96 

Class 

2 

                    

Int 1.00 1.00 

1.00 

0.01 0.94 1.00 

1.00 

0.02 0.94 1.00 

1.00 

0.01 0.95 

Slope 

1  

0.70 0.70 

0.70 

0.01 0.95 0.70 

0.70 

0.02 0.92 0.70 

0.70 

0.01 0.94 

Slope 

2 

0.70 0.70 

0.70 

0.01 0.94 0.70 

0.70 

0.02 0.95 0.70 

0.70 

0.01 0.95 

Resid 0.02 0.02 

0.02 

0.00 0.92 0.02 

0.02 

0.00 0.89 0.02 

0.02 

0.00 0.95 
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Class 1| X1 Mean Increase to X ~ N(1, 1) with All Equal X Variances; C on X Paths 

Included 

Class 

1           
Int 0.00  0.00 

0.00 

0.09 0.95 0.00 

0.00 

0.08 0.95 0.00 

0.00 

0.14 0.93 

Slope 

1  

0.20 0.20 

0.20 

0.06 0.95 0.20 

0.20 

0.05 0.93 0.20 

0.20 

0.09 0.95 

Slope 

2 

0.20  0.20 

0.20 

0.06 0.96 0.20 

0.20 

0.05 0.93 0.20 

0.20 

0.09 0.95 

Resid 0.92  0.91 

0.91 

0.08 0.93 0.91 

0.91 

0.07 0.92 0.89 

0.89 

0.12 0.92 

X1 1.00 0.33 

0.91 

0.13 0.62 0.45 

0.93  

0.16 0.69 0.30 

0.91  

0.14 0.61 

X2 0.00 -0.01 

-0.01 

0.12 0.96 0.01 

0.01 

0.14 0.96 -0.01 

-0.01 

0.13 0.96 

Class 

2 

                    

Int 1.00  1.00 

1.00 

0.01 0.94 1.00 

1.00 

0.02 0.95 1.00 

1.00 

0.01 0.92 

Slope 

1  

0.70  0.70 

0.70 

0.01 0.95 0.70 

0.70 

0.02 0.96 0.70 

0.70 

0.01 0.94 

Slope 

2 

0.70  0.70 

0.70 

0.01 0.96 0.70 

0.70 

0.02 0.96 0.70 

0.70 

0.01 0.93 

Resid 0.02  0.02 

0.02 

0.00 0.95 0.02 

0.02 

0.00 0.92 0.02 

0.02 

0.00 0.92 

Class 1 | X1 Mean and Variance Increase to X ~ N(1, 2); C on X Paths 

Class 

1           
Int 0.00 0.02 

0.02 

0.08 0.96 0.02 

0.01 

0.06 0.94 0.01 

0.01 

0.12 0.92 

Slope 

1  

0.20 0.19 

0.19 

0.04 0.95 0.19 

0.19 

0.03 0.93 0.20 

0.19 

0.06 0.94 

Slope 

2 

0.20 0.20 

0.20 

0.06 0.94 0.20 

0.20 

0.05 0.93 0.20 

0.20 

0.09 0.93 

Resid 0.84 0.83 

0.82 

0.08 0.92 0.83 

0.83 

0.06 0.94 0.82 

0.81 

0.11 0.90 

X1 1.00 0.18 

0.63 

0.10 0.14 0.21 

0.55 

0.10 0.07 0.13 

0.68 

0.13 0.40 

X2 0.00 0.00 

0.00 

0.11 0.96 -0.01 

-0.01 

0.14 0.95 -0.01 

-0.01 

0.13 0.96 

Class 

2 

                    

Int 1.00 1.00 

1.00 

0.01 0.96 1.00 

1.00 

0.02 0.96 1.00 

1.00 

0.01 0.94 
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Slope 

1  

0.70 0.70 

0.70 

0.01 0.95 0.70 

0.70 

0.02 0.92 0.70 

0.70 

0.01 0.95 

Slope 

2 

0.70 0.70 

0.70 

0.01 0.96 0.70 

0.70 

0.02 0.92 0.70 

0.70 

0.01 0.93 

Resid 0.02 0.02 

0.02 

0.00 0.93 0.02 

0.02 

0.00 0.88 0.02 

0.02 

0.00 0.93 

  

Proportion tests were conducted for each of the parameters, comparing the results 

from conditions 1-12 (i.e., the models that did not include the C on X paths), to the 

models including the paths using the same data. Table 4.7 presents the results from those 

proportion tests. As was the case with the data originally generated for cases 13-24, 

estimating models with the C on X paths for the data used in cases 1-12 shows no 

systematic difference in parameter recovery for cases 1-6—those data did not include a 

mean difference in the X1 predictors. However, the difference in parameter recovery 

becomes apparent and statistically significant when there are X1 predictor mean 

differences across classes. Concerning the 95% coverage rates, the models including the 

C on X paths outperformed the models with respect to 95% coverage for the Class 1 

intercept, Class 1|X1 slope, and the residual variances from both classes. 

 

Table 4.7: Confidence intervals without/with C on X paths– Cases 1-12 

Class 1 

Cases Int L Int U X1 L X1 U X2 L X2 U 

Resid 

L 

Resid 

U 

1 v 1B -0.03 0.03 -0.03 0.03 -0.02 0.04 -0.03 0.04 

2 v 2B -0.03 0.03 -0.04 0.03 -0.03 0.03 -0.03 0.04 

3 v 3B -0.03 0.03 -0.03 0.04 -0.04 0.03 -0.05 0.03 

4 v 4B -0.04 0.03 -0.04 0.03 -0.03 0.04 -0.04 0.03 

5 v 5B -0.03 0.04 -0.03 0.04 -0.03 0.03 -0.03 0.03 

6 v 6B -0.03 0.04 -0.04 0.03 -0.04 0.03 -0.04 0.03 

7 v 7B -0.15 -0.07 -0.23 -0.14 -0.09 -0.02 -0.18 -0.09 

8 v 8B -0.16 -0.08 -0.23 -0.14 -0.08 0.00 -0.16 -0.07 
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9 v 9B -0.14 -0.05 -0.21 -0.12 -0.06 0.01 -0.15 -0.06 

10 v 10B -0.12 -0.05 -0.17 -0.08 -0.05 0.02 -0.10 -0.02 

11 v 11B -0.12 -0.04 -0.12 -0.04 -0.06 0.01 -0.07 0.00 

12 v 12B -0.10 -0.02 -0.13 -0.05 -0.06 0.01 -0.13 -0.04 

Class 2 

Cases Int L Int U X1 L X1 U X2 L X2 U 

Resid 

L 

Resid 

U 

1 v 1B -0.03 0.03 -0.03 0.03 -0.04 0.03 -0.04 0.03 

2 v 2B -0.03 0.03 -0.02 0.04 -0.04 0.03 -0.04 0.04 

3 v 3B -0.03 0.03 -0.03 0.03 -0.03 0.03 -0.02 0.03 

4 v 4B -0.03 0.03 -0.03 0.03 -0.03 0.03 -0.03 0.04 

5 v 5B -0.03 0.03 -0.03 0.04 -0.03 0.03 -0.03 0.03 

6 v 6B -0.03 0.03 -0.03 0.03 -0.03 0.03 -0.03 0.03 

7 v 7B -0.03 0.03 -0.04 0.02 -0.02 0.03 -0.15 -0.07 

8 v 8B -0.03 0.03 -0.05 0.01 -0.04 0.02 -0.17 -0.08 

9 v 9B -0.03 0.04 -0.05 0.02 -0.04 0.03 -0.12 -0.03 

10 v 10B -0.03 0.03 -0.03 0.03 -0.04 0.02 -0.19 -0.10 

11 v 11B -0.02 0.03 -0.06 0.02 -0.03 0.04 -0.22 -0.11 

12 v 12B -0.03 0.03 -0.03 0.03 -0.03 0.03 -0.13 -0.04 

Note. Bold values indicate significant differences at α = .05.
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CHAPTER 5 

DISCUSSION 

The focus of this study was to determine the ability of regression mixtures to 

correctly enumerate classes and recover parameters from superpopulations using models 

with balanced and unbalanced sample proportions each having multiple predictors with 

equal and unequal means and variances. This study included several conditions 

encountered in practice, such as: (a) multiple predictors, (b) unbalanced designs (in terms 

of sample size and parameter size), (c) differing predictor means across latent classes, 

and (d) differing predictor variances across latent classes. Although previous simulation 

studies of RMMs have investigated the effects of constraining residual variances and 

predictor means, in the presence and absence of differences in these terms across classes, 

this study fills in a gap in the RMM literature related to how well these models handle 

differences in predictor variances across classes. This was the first study to shed light on 

the effect of predictor variance differences across classes with respect to enumeration and 

parameter recovery.   

A simulation study was conducted to examine the effects of mixing weights, 

differences in predictor distributions across classes, and the omission vs. inclusion of C 

on X (i.e., functionally frees estimation of X means) paths on enumeration and parameter 

recovery with regression mixtures. The simulation study consisted of a fully crossed 

design with 24 cells comprised of 3 sample proportions (i.e., 50/50, 75/25, 25/75) x 2 
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predictor mean conditions (i.e., Class 1— Normally distributed X1 with either variance 

equal to 0 or 1) x 2 predictor variance conditions (i.e., Class 1—Normally distributed X1 

with either variance equal to 1 or 2) x 2 tested models (i.e., with and without C on X 

paths).  

The first outcome of interest from the simulation study—class enumeration—

indicated a strong preference for initially estimating models, for the purpose of 

enumeration, without the C on X paths or the inclusion of covariates. Class enumeration, 

which is related to determining the number of underlying subpopulations within the 

sample, was determined using a penalized likelihood criterion—namely, BIC. The 

percentages of replications wherein the BIC chose the two-class solution over the one- 

and three-class solutions and the percentages of replications wherein the BIC chose the 

three-class solution over the two-class solution were used to evaluate enumeration across 

conditions. Overall, conditions (i.e., Table 4.2 – cells 1-12), which did not include the C 

on X paths correctly enumerated with BIC more often than the models including the C on 

X paths. However, when there was not a predictor variance discrepancy—either with or 

without a predictor mean difference—the models with the C on X paths resulted in 

correct enumeration slightly more often. The lowest correct enumeration rate across 

conditions without the C on X paths, where the predictor means are constrained to be 

equal, was 95%. This indicates that enumerating without the C on X paths appears to be 

robust across conditions with and without predictor mean and variance differences when 

the mixing weights are balanced and unbalanced. The lowest correct enumeration for the 

conditions 13-24 (i.e., including the C on X paths) was 52%. This difference in 

enumeration is more apparent in the predictor variance discrepant conditions. 
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Specifically, conditions 4-6 and 10-12 all had correct enumeration more often than 98% 

as compared to conditions 16-18 and 22-24 (which included the C on X paths) where the 

two-class solution was recovered between 52% and 87% of the time.  

Even when there were discrepant variances for the X1 predictor and discrepant X1 

means and variances, meaning that the true distributions for the X1 predictors were 

different across classes, not including the C on X paths led to correct enumeration more 

often than in conditions when the predictors were included as covariates (i.e., C on X 

paths). The advantage of not including the X variables as covariates predicting class 

membership was highlighted when the mixing weights were 50/50 and 25/75. Therefore, 

the difficulty of correctly enumerating regression mixtures when covariates are included 

in the model is compounded when the mixing weight associated with the smaller effect 

size class is either equal to or smaller than the mixing weight associated with larger effect 

size class.  

Results of the current study supported findings from Nylund-Gibson & Masyn 

(2016), who found that including covariates that predict latent class membership (e.g., Z 

variables and C on X paths) led to over-extraction of classes in the enumeration phase. In 

order to avoid incorrect enumeration, it was suggested that the number of classes should 

be chosen based on comparisons between models not including covariates (Nylund-

Gibson & Masyn, 2016). Then, once the number of classes has been determined, 

covariates predicting class membership can be added to models. Furthermore, results 

support findings from Lamont, Vermunt, and Van Horn (2016), who showed that failing 

to include C on X paths to account for predictor mean differences can result in over-

extraction of classes. Results from this study revealed that overextraction encountered by 
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not including C on X paths in the presence of a predictor mean difference is present to a 

greater extent when there is a predictor variance difference and the C on X paths are 

included. This means that overextraction is a problem during enumeration when the 

predictor means are freely estimated, and the true predictor distributions have unequal 

variances. The percentage of times the model with constrained predictor means resulted 

in an incorrect extraction of three classes when the BIC should have chosen only two 

classes never exceeded 2%-- even when there was a predictor mean difference. This 

provides evidence that enumeration is more sensitive to differences in predictor variances 

than predictor means. In contrast, with freely estimated predictor means in the presence 

of a predictor variance difference, resulted in incorrect enumeration ranging between 

13% and 48% of the time. Therefore, enumeration should always be conducted using 

models that do not have freely estimated predictor means (i.e., constrained predictor 

means – no C on X paths). 

In line with the results from by Lamont, Vermunt, and Van Horn (2016), this 

study showed that when the class separation is large, (e.g., intercept difference equal to 

1), using BIC for enumeration does not appear to be affected by the inclusion of C on X.  

This result was observed whether there was a predictor mean difference across classes or 

not (in the absence of predictor variance differences across classes). For the applied 

researcher, this means that C on X paths should not be included during enumeration, or 

the process of selecting the number of classes, with regression mixture models. This 

study helps to better understand enumeration as a variance difference in predictor 

distributions across classes (with and without predictor mean differences)—C on X paths 

were found to negatively impact enumeration.   
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Findings from this study suggest that not including covariates, especially in the 

form of C on X paths during enumeration to be especially apparent with regards to 

regression mixtures when the variances of the predictors are not equal across classes. 

Therefore, applied researchers using mixture models, should first estimate and enumerate 

without covariates (i.e., Z variables)—including the use of X variables with a C on X 

path. Then, after the optimal number of classes has been chosen based on BIC, the model 

with k classes including covariates and C on X paths should be estimated to obtain final 

parameter estimates. Although it is not always the case that predictor means will vary 

across classes, this study demonstrates that including the C on X paths leads to better 

parameter recovery when the predictor means are indeed different across classes. 

Although using the BIC index to identify the optimal number of classes led to 

correct enumeration more often in models without the C on X paths, the models including 

the predictors as covariates led to better parameter recovery, especially when a predictor 

mean difference was present across classes, regardless of differences in predictor 

variances. Differences in 95% coverage rates between conditions with and without the C 

on X paths were analyzed using two-sample proportion tests for each of the common 

parameters. The two-sample tests of proportions  arose from comparing the two types of 

models (i.e., with and without C on X paths) across all combinations of the following 

factors: (1) mixing weight for the smaller effect size class (i.e., three levels—.25, .50, and 

.75); (2) mean discrepancy in X1 across classes (i.e., two levels—0 and 1); (3) variance 

discrepancy in X1 across classes (i.e., two levels—1 and 2). The 95% confidence intervals 

for the differences in the proportions between the 95% coverage rates for the models with 

and without the C on X paths indicated the benefit of including the C on X paths after first 
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enumerating without covariates. The difference in coverage rates was most apparent for 

the Class 1 intercept an X1 slope parameter, when a predictor mean difference across 

latent classes was present, proportion tests showed significant differences between 

coverage rates between the models with and without the C on X paths. For each of the 

conditions in which the X1 predictor in Class 1 had a greater mean than the X1 predictor in 

Class 2, the models with the C on X paths obtained greater coverage rates for the X1 slope 

parameter in class 1. For the same comparisons, involving cases with mean differences in 

the X1 predictor, models including C on X paths also obtained significantly greater 

coverage rates for the Class 1 intercept values and the residual variances for Class 2.  

These results here are in line with Lamont et al (2016) who also found that failing to 

include the C on X path resulted in reduced parameter coverage rates. Similarly, Kim et 

al. (2019), illustrated issues related to improperly constraining discrepant residual 

variances across classes. These findings, when considered alongside findings point to the 

intuitive understanding that parameter recovery with regression mixtures will be 

compromised when parameters that are indeed different across classes are held constant 

in estimation.   

 Based on results from this study, applied researchers should enumerate RMMs, 

much like what is done with latent class models –that is, without covariates and C on X 

paths. After the optimal k number of classes has been determined, covariates and C on X 

paths aligned with theory should be added in order to avoid biased parameter estimates 

that would result from unnecessarily constraining predictor means.   
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5.1 LIMITATIONS AND FUTURE STUDY  

Although this study found promising findings related to the utility of regression 

mixtures run as a two-step procedure, this simulation study used a limited set of 

conditions with only one total sample size, large class separation, uncorrelated predictors, 

one discrepant predictor mean condition, one discrepant variance condition, and only two 

effect sizes across two latent classes. It will be important for researchers to extend this 

work in order to determine the extent to which two-step regression mixtures are able to 

correctly enumerate and recover parameters when predictors have multicollinearity. 

There will also be a need to determine how well the two-step regression mixture 

procedure is able to operate with different sample sizes, larger numbers of underlying 

latent classes (i.e., three, four, etc.), and different predictor distribution conditions. Most 

importantly, it will be necessary to investigate the performance of other multi-step 

estimation procedures. This study points to the strength of first estimating regression 

mixtures without covariates, and then after correct enumeration including the C on X 

paths for final parameter estimation. However, a three-step procedure, wherein clusters 

are first determined using only the predictors should also be compared to the two-step 

procedure described in this study. 

Future research, in addition to testing the claims put forth in this study, should be 

conducted with regression mixtures involving more predictors belonging to different 

parametric families. This will be paramount in establishing and understanding the 

practical applications for these models. This study explained the importance of excluding 

normally distributed covariates during enumeration, which becomes especially 

problematic when the variances of the predictors vary across classes. Building on this, 
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interested researchers must investigate regression mixtures involving various types of 

predictors (i.e., categorical, count, etc.)   

5.2 SUMMARY  

 This study focused on understanding how several data characteristics associated 

with the investigation of effect heterogeneity (i.e., mixing weights, predictor 

distributions, and the inclusion of covariates) affected enumeration and parameter 

recovery with RMMs. The inclusion of C on X paths, which allow predictor means to 

vary across classes, at two points in the model building process—during and after 

enumeration—was of interest. This main aim was accomplished by comparing the 

enumeration rates and parameter coverages with and without freely estimated predictor 

means across classes for models with two classes, considerable separation between 

groups, and a total sample size of 500. Findings indicated that C on X paths, should only 

be included after enumeration (e.g., Nylund-Gibson & Maysen, 2014). Inclusion of C on 

X paths functionally free the estimation of associated predictor means across classes. If 

these paths are included in the enumeration phase, over-extraction is typical when 

predictor variance differences are present. Results from this study supported findings 

from previous research that demonstrated the necessity of including the C on X path when 

predictor means vary across classes (Lamont, Vermunt, & Van Horn, 2016). Therefore, 

once the number of classes has been determined, C on X paths should be included in 

models just as researchers would freely estimate residual variances across classes.
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APPENDIX A 

 

R CODE FOR CONDITION 1 WITH K = 1:2  

 
library(stringr) 

Datagen=function(num,reps,flnm,n.c1,n.c2,mean.c1.x1,sd.c1.x1,mean.c2.x1,sd.c2.x1,mean.c1.x

2,sd.c1.x2,mean.c2.x2,sd.c2.x2)  

{ 

dat=matrix(NA,ncol=4,nrow=num)       

  

# generate class membership and save to col.3 in datemp 

class=c(rep(1,n.c1),rep(0,n.c2))     #class[class==0]=2 

dat[,4]=class 

 

# generate covariate 1 and save it to col.1 

dat[,1][class==1]= rnorm (sum(class==1),mean=mean.c1.x1,sd=sqrt(sd.c1.x1)) 

dat[,1][class==0]= rnorm (sum(class==0),mean=mean.c2.x1,sd=sqrt(sd.c2.x1)) 

 

# generate covariate 2 and save it to col.2 

dat[,2][class==1]= rnorm (sum(class==1), mean.c1.x2,sd=sqrt(sd.c1.x2)) 

dat[,2][class==0]= rnorm (sum(class==0), mean.c2.x2,sd=sqrt(sd.c2.x2)) 
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# generate error terms 

rande1=rnorm(sum(class==1),mean=0,sd=sqrt(.92)) 

rande2=rnorm(sum(class==0),mean=0,sd=sqrt(.02)) 

 

# generate response and save it to col.2 

dat[,3][class==1]=dat[,1][class==1]*0.2 + dat[,2][class==1]*0.2 + rande1 

dat[,3][class==0]= 1 + dat[,1][class==0]*0.7 + dat[,2][class==0]*0.7 + rande2  

  

file.str=paste(flnm,reps,".txt",sep="") 

write.table(dat,file.str,row.names=F,col.names=F) 

} 

 

for(i in 1:500) { 

Datagen(500,i,"C:/Users/philr/Documents/Reg_Mix/data/case_1/case_1_",250,250,0,1,0,1,0,1,

0,1) 

} 

 

###  

# This code generates the mplus input file to run a regression mixture for  

# one and two classes 

reps=i 

flnm="C:/Users/philr/Documents/Reg_Mix_2/data/case_1/case_1_" 

file.str=paste(flnm,reps,".txt",sep="") 

# infile is the data file to be analyzed  
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# reps is the replication number  

# saveloc is the file location to which the estimates will be written  

# mpinput is the file location to which the mplus input file will be written  

 

mplusin=function(infile, reps, saveloc,saveloc2, mpinput){ 

mpmat<-'title:  a latent class model assuming cross-sectional data;' 

mpmat<-rbind(mpmat, paste('data: file is ', infile, ';', sep='')) 

mpmat<-rbind(mpmat,'variable:') 

mpmat<-rbind(mpmat,'') 

mpmat<-rbind(mpmat,'names are  x1 x2 y cl; ') 

mpmat<-rbind(mpmat,'') 

mpmat<-rbind(mpmat,'usevariables are x1 x2 y;') 

mpmat<-rbind(mpmat,'classes=c(',k,');') 

mpmat<-rbind(mpmat,'') 

mpmat<-rbind(mpmat,'analysis:') 

mpmat<-rbind(mpmat,'type=mixture;') 

mpmat<-rbind(mpmat,paste('STSEED=', sample(1:1000000, 1, replace=FALSE), ';')) 

mpmat<-rbind(mpmat,'model:') 

mpmat<-rbind(mpmat,'%overall%') 

mpmat<-rbind(mpmat,'y on x1 x2;') 

mpmat<-rbind(mpmat,'y;') 

mpmat<-rbind(mpmat,'%c#1%') 

mpmat<-rbind(mpmat,'y on x1 x2;') 

mpmat<-rbind(mpmat,'y;') 
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mpmat<-rbind(mpmat,paste('Savedata: results are ',saveloc, ';', sep='')) 

mpmat<-rbind(mpmat,paste('file is ',saveloc2, ';', sep='')) 

mpmat<-rbind(mpmat,'save is cprob;') 

write(mpmat,mpinput) 

} 

 

flnm="C:/Users/philr/Documents/Reg_Mix_2/data/case_1/case_1_" 

svname="C:/Users/philr/Documents/Reg_Mix_2/results/case_1/case_1_" 

svname2="C:/Users/philr/Documents/Reg_Mix_2/cprob/case_1/case_1_" 

inname="C:/Users/philr/Documents/Reg_Mix_2/inputs/case_1/case_1_" 

 

for(k in 1:2) { 

for(i in 1:500) { 

file.str=paste(flnm,i,".txt",sep="") 

sv.str=paste(svname,i,"_",k,".txt",sep="") 

sv.str2=paste(svname2,i,"_",k,".txt",sep="") 

in.str=paste(inname,i,"_",k,".txt",sep="") 

mplusin(file.str,i,sv.str,sv.str2,in.str) 

} 

} 

 

# setwd sets the work directory, usually this is the location of mplus.exe  

setwd("C:/Program Files/Mplus") 
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for(k in 1:2) { for (i in 1:500) { 

inmat=paste(inname,i,"_",k,".txt",sep="") 

inmat=rbind(inmat,"C:/Users/philr/Documents/Reg_Mix_2/results/case_1/temp.txt") 

write(inmat,"C:/Users/philr/Documents/Reg_Mix_2/infiles/condition_1.txt") 

shell("Mplus < C:/Users/philr/Documents/Reg_Mix_2/infiles/condition_1.txt") 

} 

} 
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